
0 
 

 

Karl-Heinz Kuhl   

 PRIME NUMBERS–  
THINGS LONG-KNOWN 

AND THINGS NEW-
FOUND 

A JOURNE Y THR OUGH THE L ANDSCA PE  OF THE PRIM E N UMB ERS  

Amazing properties and insights – not from the perspective of a mathematician, but from that of 
a voyager who, pausing here and there in the landscape of the prime numbers, approaches their 
secrets in a spirit of playful adventure, eager to experiment and share their fascination with 
others who may be interested.  

 

Third, revised and updated edition (2020) 

 



  

1 
 

 

Prime Numbers – things long-
known and things new-found 

 

 
A journey through the landscape of the prime numbers 

  

 

Amazing properties and insights – not from the perspective of a mathematician, but 

from that of a voyager who, pausing here and there in the landscape of the prime 

numbers, approaches their secrets in a spirit of playful adventure, eager to experiment 

and share their fascination with others who may be interested. 

 

 

Dipl.-Phys. Karl-Heinz Kuhl 

 

Parkstein, December 2020 

 

 

1 + 2 + 3 + 4 +⋯ = −
1

12
  

(Ramanujan) 

 

 

Web: 

https://yapps-arrgh.de 

 
(Yet another promising prime number source:  

amazing recent results from a guerrilla hobbyist) 

 
Link to the latest online version https://yapps-arrgh.de/primes_Online.pdf 

 

Some of the text and Mathematica programs have been removed from the free online version. The printed 

and e-book versions, however, contain both the text and the programs in their entirety. Recent supple-

ments to the book can be found here: https://yapps-arrgh.de/data/Primenumbers_supplement.pdf 

Please feel free to contact the author if you would like a deeper insight into the many Mathematica 

programs. 

Contact: info@yapps-arrgh.de  

https://yapps-arrgh.de/
https://yapps-arrgh.de/primes_Online.pdf
https://yapps-arrgh.de/data/Primenumbers_supplement.pdf
mailto:info@yapps-arrgh.de


  

2 
 

 

 

 

 

 

For Michèle 

 

 

 

 

 

 

ISBN 978-3-939247-93-7  

Publishing house: Eckhard Bodner, Pressath, Germany - 2017 

Third, revised edition – December 2020 

Translation: Ewan Whyte 

The illustration on the title page shows the graphic from Figure 82, Chapter 9.2. 

Cover design: Karl-Heinz Kuhl 

Copyright: this work and all embedded illustrations and computer programs are copyright protected. Any 

commercial use that has not been expressly authorized by the author is prohibited. The new algorithms and 

methods described in this book are protected by notarization (with an indication of the date).  

The contents of this book (and of the free online version available for download) including all related files 

may be used, distributed, published on the Internet and referred to by readers in their own publications in 

each case for private and non-commercial purposes only and provided all contents are quoted correctly, in 

full and in an unaltered form, accompanied by a description of the book, the name of the author and a link 

to the website above. This applies to all texts, graphics and computer programs as well as other files. 

Citations in particular from passages printed in blue should be accompanied by an indication that the 

material in question is considered ‘new’. 

 

Liability: the author is not responsible for damages of any kind that may result from use of the computer 

program listings (whether in the Appendix, on the accompanying CD or in the body of the text). 

Furthermore, the author gives no warranty that all programs are free from errors or that they will run in all 

operating system environments.



   

3 
 

1 Table of Contents 

2 Introduction ................................................................................................................................................. 8 

2.1 Mathematical notation used in this book .............................................................................. 10 

3 Basics of prime numbers ...................................................................................................................... 14 

3.1 Quick start: what do we know for certain? .......................................................................... 16 

3.2 Quick start: what are our (unproven) conjectures? ......................................................... 17 

3.3 Quick start: what is still unsolved? .......................................................................................... 18 

3.4 Quick start: what is new? ............................................................................................................. 19 

4 Special kinds of prime numbers ........................................................................................................ 20 

4.1 Twin primes ...................................................................................................................................... 20 

4.2 Prime triplets and quadruplets ................................................................................................. 23 

4.3 Prime  n-tuplets ............................................................................................................................... 25 

4.4 Correlations of the last digits in the prime number sequence ..................................... 32 

4.5 Mersenne prime numbers ........................................................................................................... 34 

4.5.1 GIMPS – the Great Internet Mersenne Prime Search ................................................ 39 

4.6 Fermat prime numbers................................................................................................................. 40 

4.7 Lucky primes ..................................................................................................................................... 42 

4.8 Perfect numbers .............................................................................................................................. 44 

4.8.1 General issues and definition ............................................................................................. 44 

4.8.2 Properties ................................................................................................................................... 45 

4.9 Sophie Germain prime numbers ............................................................................................... 47 

4.9.1 Computation and properties .............................................................................................. 48 

4.10 Fibonacci numbers and other recursive sequences ......................................................... 49 

4.10.1 Linear recursion: a mighty instrument .......................................................................... 52 

4.10.2 Fibonacci prime and pseudoprime numbers ............................................................... 61 

4.10.3 Meta-Fibonacci sequences ................................................................................................... 63 

4.11 Carmichael and Knödel numbers ............................................................................................. 64 

4.12 Emirp numbers ................................................................................................................................ 65 

4.13 Wagstaff prime numbers ............................................................................................................. 65 

4.14 Wieferich prime numbers ........................................................................................................... 67 

4.15 Wilson prime numbers ................................................................................................................. 70 

4.16 Wolstenholme prime numbers.................................................................................................. 71 

4.17 RG numbers (= recursive Gödelized) ...................................................................................... 72 

4.17.1 GOCRON type 6 (‘prime OCRONs‘) ................................................................................... 72 



  

4 
 

4.17.2 GOCRON type 4 (with the symbols ‚‘2’,‘*’,‘P’ and ‘^’) ................................................ 76 

5 Digression: Riemann’s zeta function 휁(𝑠) ..................................................................................... 79 

5.1 General ................................................................................................................................................ 79 

5.2 The different representations of 휁(𝑠) ..................................................................................... 85 

5.3 Product representation of 휁(𝑠) in the complex domain ................................................. 87 

5.4 An unexpected product representation of a slightly different 휁(𝑠) ........................... 93 

5.5 A counting function for the number of zeros ...................................................................... 96 

5.6 The zeta function and quantum chaos: a gangway to physics...................................... 99 

6 Digression: the Riemann function 𝑅(𝑠) ...................................................................................... 103 

7 A few important arithmetical functions ...................................................................................... 104 

7.1 Omega functions: number of prime factors ...................................................................... 104 

7.2 The Liouville function ................................................................................................................ 106 

7.3 The Chebyshev function ............................................................................................................ 108 

7.4 The Euler phi function (totient function) ........................................................................... 111 

7.4.1 Calculation and graphic representation of the phi function ............................... 111 

7.4.2 Properties of the phi function ......................................................................................... 113 

7.5 The sum-of-divisors function (sigma function) ............................................................... 115 

7.5.1 Definition, properties ......................................................................................................... 115 

7.5.2 Graphic representations of the sigma function ....................................................... 118 

7.6 The Ramanujan tau function ................................................................................................... 122 

7.7 The Mertens function ................................................................................................................. 126 

7.8 The radical ...................................................................................................................................... 128 

7.9 Ramanujan sums .......................................................................................................................... 129 

7.9.1 Definition ................................................................................................................................. 130 

7.9.2 Properties ................................................................................................................................ 134 

7.9.3 Extension to ℝ ....................................................................................................................... 135 

8 Functions for the calculation of prime numbers ..................................................................... 138 

8.1 Functions that provide exactly all prime numbers ........................................................ 138 

8.2 Functions that always return a prime number ................................................................ 139 

8.3 Functions whose set of positive integers equates to the set of prime numbers .......... 139 

8.4 Recursive formulae ..................................................................................................................... 140 

8.5 Functions having zeros or minima at prime number positions................................ 141 

8.5.1 A variant of the ℨ function ............................................................................................... 141 

8.5.2 The Reed Jameson function ............................................................................................. 142 



2 Introduction 

5 
 

8.5.3 Other arithmetical functions having zeros at prime number positions ........ 143 

8.6 Formulae for calculating the number of primes ............................................................. 143 

8.7 Formulae for calculating the nth prime number ............................................................. 150 

8.8 Formulae for calculating the nth non-prime (composite number) ......................... 150 

9 Now it gets interesting: four-dimensional spheres and prime numbers ...................... 152 

9.1 The second dimension: circles and integer lattice points ........................................... 154 

9.1.1 Formulae and properties .................................................................................................. 157 

9.2 Third dimension: spheres and integer lattice points .................................................... 159 

9.2.1 Formulae and properties .................................................................................................. 165 

9.3 Fourth dimension: hyperspheres and integer lattice points on ‘glomes‘ ............. 166 

9.3.1 Formulae and properties ...................................................................................................... 174 

10 About OCRONs and GOCRONs: shades of Gödel ...................................................................... 175 

10.1 What are OCRONs and GOCRONs? ........................................................................................ 175 

10.1.1 Representation by sums in numeral systems ........................................................... 176 

10.1.2 Product representation using prime factors............................................................. 178 

10.2 OCRONs with prime operators ............................................................................................... 179 

10.2.1 OCRONs with the prime “P” and “*” operators ........................................................ 180 

10.2.2 OCRONs with the prime “P”, “*” and “^” operators ................................................ 182 

10.2.3 OCRONs with the prime “P”, “*”, “^” and “Q” operators ....................................... 200 

10.2.4 OCRONs with prime and non-prime operators ....................................................... 200 

10.3 The world of OCRON beings and mathematical dynamite .......................................... 206 

11 Prime numbers and the “Matrix” software: are there rules for primes? ....................... 212 

11.1 Rules for differences of the nth order .................................................................................. 212 

12 The abc conjecture ............................................................................................................................... 221 

12.1 General ............................................................................................................................................. 221 

12.2 The abc conjecture and GOCRONs: is there a connection? ......................................... 225 

12.3 The set 𝑀𝑎𝑏𝑐 and its plane-equation .................................................................................. 230 

13 Prime numbers in the natural sciences ....................................................................................... 234 

13.1 Prime numbers in DNA code ................................................................................................... 234 

13.2 Spectral characteristics of ‘prime number signals’ ........................................................ 237 

14 Prime numbers and online banking ............................................................................................. 240 

14.1 RSA encryption ............................................................................................................................. 240 

14.2 The security of the RSA method ............................................................................................. 245 



  

6 
 

14.3 Computing examples of RSA encryption and decryption ............................................ 246 

15 Prime numbers in music ................................................................................................................... 250 

15.1 Euler’s theory of consonance and the Gradus Suavitatis ............................................. 250 

15.1.1 Mathematical properties of the Gradus Suavitatis .................................................. 254 

15.1.2 ‘Adjusted listening’ to complex or irrational intervals ......................................... 255 

15.2 Prime numbers as rhythmic patterns .................................................................................. 256 

16 Prime numbers in poetry .................................................................................................................. 259 

16.1 Haikus and tankas ........................................................................................................................ 259 

16.2 Sestinas............................................................................................................................................. 261 

16.3 Matter for reflection.................................................................................................................... 265 

17 Prime numbers and extraterrestrial life forms........................................................................ 267 

17.1 The Arecibo message .................................................................................................................. 269 

18 Miscellany ................................................................................................................................................ 271 

18.1 The number 12 .............................................................................................................................. 271 

18.2 The number 313 ........................................................................................................................... 272 

18.3 Prime numbers and the arts .................................................................................................... 273 

19 Conclusion ............................................................................................................................................... 274 

20 Appendix .................................................................................................................................................. 275 

20.1 Catalan’s conjecture .................................................................................................................... 275 

20.2 Statistical anomalies of the last digits in the prime number sequence ................. 276 

20.3 An interesting sequence: the Perrin sequence ................................................................ 278 

20.4 More conjectures about prime numbers ............................................................................ 280 

20.5 Prime n-tuplets: constellations of prime numbers ........................................................ 281 

20.6 Explicit solutions from Chapter 4.10.1 ................................................................................ 283 

20.7 More illustrations of RG sequences ...................................................................................... 284 

20.8 Virtual OCRONs ............................................................................................................................. 287 

20.9 More unsolved mathematical problems ............................................................................. 291 

20.9.1 The Euclid-Mullin sequence ............................................................................................. 291 

20.9.2 Aliquot sequences ................................................................................................................ 292 

20.9.3 Factorization of integer numbers .................................................................................. 310 

20.10 Tables ................................................................................................................................................ 316 

20.10.1 Number of primes up to a given limit n: 𝜋(n) ........................................................... 316 

20.10.2 Mersenne prime numbers ................................................................................................ 320 



2 Introduction 

7 
 

20.10.3 Fermat prime numbers ...................................................................................................... 321 

20.10.4 Degeneration of type 4 OCRONs and EOCRONs ...................................................... 322 

20.10.5 Zeros of Ramanujan’s tau L function ............................................................................ 324 

20.10.6 The abc conjecture: fit parameter and C3 values of the plane equations for 

different Gödelization methods........................................................................................................ 326 

20.10.7 Reed Jameson pseudo prime numbers ........................................................................ 329 

20.11 Mathematica programs.............................................................................................................. 329 

20.11.1 Comparison of the number of twin, cousin and sexy primes by the formula of 

Hardy-Littlewood ................................................................................................................................... 330 

20.11.2 RG sequences ......................................................................................................................... 330 

20.11.3 Riemann’s zeta function .................................................................................................... 330 

20.11.4 Reed Jameson and Perrin sequences ........................................................................... 331 

20.11.5 Lattice points on n-spheres (n-dimensional spheres) .......................................... 331 

20.11.6 Evaluation and statistics of differences of the prime sequence ........................ 335 

20.11.7 The abc conjecture ............................................................................................................... 336 

20.11.8 Other Mathematica programs ......................................................................................... 336 

20.11.9 OCRONs and the abc conjecture: program library ................................................. 338 

20.11.10 Sound routines ..................................................................................................................... 339 

20.11.11 RSA encryption and decryption .................................................................................... 339 

20.11.12 Aliquot sequences ............................................................................................................... 342 

20.11.13 The Arecibo message ......................................................................................................... 343 

20.11.14 Correlations of the last digits in the prime number sequence ......................... 344 

20.11.15 Prime n-tuplets and maximal prime number density .......................................... 344 

Bibliography ....................................................................................................................................................... 344 

List of illustrations .......................................................................................................................................... 345 

List of tables ....................................................................................................................................................... 351 

Search index ....................................................................................................................................................... 352 

The enclosed CD containing computer programs .............................................................................. 355 

Animations ..................................................................................................................................................... 355 

Mathematica notebooks ........................................................................................................................... 355 

Sounds ............................................................................................................................................................. 355 

Graphics .......................................................................................................................................................... 356 

Acknowledgements ......................................................................................................................................... 357 



   

8 
 

2 INTRODUCTION 

Prime numbers – scarcely any other concept in mathematics can have fascinated and 

inspired so many people. Prime numbers seem devoid of the very properties usually 

associated with mathematical ‘objects’: computability, neatness, order… 

Prime numbers exhibit no discernible regularity; they just sit randomly and aimlessly 

between the other natural numbers. One has the impression that God, when creating the 

natural numbers, just scattered the primes in among them to grow wild like weeds. 

Mathematicians have been known, of course, to use on occasion more positive and poetic 

imagery when speaking of prime numbers and their related functions: instead of ‘weeds’, 

one hears terms like ‘pearls’ or ‘gems’ (an allusion, perhaps, to the fact that very large 

prime numbers are as hard to find as precious stones), and the zeta function, which is 

closely related to prime numbers (see Chapter 1), is sometimes spoken of as a ‘landscape 

crying out for exploration’. 

This ‘unfathomability’ – this ‘quantum of chaos’, if you will – is the source of their 

appeal; for although prime numbers have exercised a fascination over mankind for 

hundreds of years, many of the questions surrounding them remain unresolved, despite 

the best efforts of some of the greatest mathematicians who have ever lived or are alive 

today! 

The number of books devoted to prime numbers has grown considerably in recent years. 

These fall for the most part into either of two categories: popular-scientific books, which 

contain hardly any mathematical formulae, and academic treatises written in highly 

technical language, which consist mainly of mathematical derivations, proofs and 

formulae that even ambitious hobby-mathematicians find difficult to understand. 

This book seeks to provide a different approach to mathematics. Wherever possible, 

language has been used that is simple and easy to understand. The reader will find here 

very few proofs. The author has made no attempt, though, to dispense with formulae and 

graphs. To the contrary: the book contains an abundance of illustrations and formulae. 

The reason for this is very simple: mathematical formulae have a certain aesthetic and 

mysterious appeal, even if they are not always understood by the reader. This may awake 

in readers a certain curiosity and inspire them to seek a more profound understanding of 

some topics. It is the same with the many graphs and illustrations: a picture is worth a 

thousand words. The author would even venture the hypothesis that it is possible to 

appreciate the aesthetics of mathematics without subjecting oneself to the full rigours of 

the discipline. 

No effort has been made here to present formal mathematical proofs of the various 

theorems discussed. The author regards mathematics – especially the mathematics of the 

primes – rather as a giant playground to be explored at one’s leisure and within which to 

experiment freely. Of course such experiments are not such as to satisfy the norms that 

prevail in the mathematical community, and such a procedure may even make some 

mathematicians uneasy. It is conceived, though, as a means of offering – even to those 

with no formal education in the subject – a glimpse of the beauty of mathematics, just as 
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one can enjoy a concerto by J.S. Bach without having previously analysed its structure 

using the tools of the musicologist. 

A constant source of astonishment is the way as one explores the galaxy of prime 

numbers, wormholes suddenly appear linking supposedly remote areas of the 

mathematical – and physical – universe with one another. 

Without any mathematical knowledge whatever, it must be owned, readers are likely to 

struggle. Those with high school or GCSE maths will certainly find it of assistance in the 

understanding of certain chapters. On the other hand, it is possible to appreciate the results 

(which are mostly presented in the form of illustrations and graphs) without necessarily 

understanding the minutiae of the methods by which they were obtained… 

The exploration of prime numbers was long categorized as ‘pure’ mathematical research 

of little use to anyone in everyday life. But all that changed with the need in recent years 

to develop secure methods of encrypting data flows over the Internet. These methods are 

based on the characteristics of very large prime numbers (or on the characteristics of large 

numbers composed of a very large prime numbers). More on this in the chapter “Prime 

numbers and online banking”.  

Naturally, this work does not cover all topics concerning prime numbers. Indeed certain 

themes that might be thought relevant are not touched on at all. Instead, the author has 

cherry-picked topics that seemed to him to be of particular interest and concentrated 

exclusively upon them. Most of the themes discussed here can be found in the numerous 

books devoted to the subject as well as in periodicals and on the Internet. This work is 

therefore in large part a summary of well-known theorems and techniques of analysis that 

are to some extent useful also for the understanding of the more detailed parts of the book. 

These parts are in the nature of an ‘anthology of formulae’ and most of the selected topics 

are dealt with in detail on websites such as https://en.wikipedia.org and 

http://mathworld.wolfram.com. 

This book would not have been possible without the software application ‘Mathematica’1 

with the aid of which most of the many illustrations and formulae have been created. 

Readers in possession of this software are encouraged to experiment with the many 

programs presented here, which can be done simply by copying the program code into a 

Mathematica notebook and then executing it or by loading the notebooks directly from 

the CD enclosed with the book. 

The author has endeavoured to cite as many sources as possible. However, to pre-empt 

misunderstandings over any unattributed quotations or sources, the following convention 

has been adopted: passages displayed or printed in black contain material that has already 

been presented (by other authors) and published (whether on the Internet or in academic 

books or periodicals). The material in black therefore constitutes for the most part a 

summary or amalgam of texts the author considers especially interesting, sourced mainly 

from well-known websites devoted to the subject. The author craves indulgence if every 

last one of these sources is not mentioned, but in the age of the Internet, with its powerful 

 
1 Mathematica: https://www.wolfram.com/mathematica 

https://en.wikipedia.org/
http://mathworld.wolfram.com/
https://www.wolfram.com/mathematica
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search engines, locating in any given case the source in question should only take a few 

seconds. 

Themes or formulae that (to the best of the author’s knowledge) have not yet been 

dealt with in the specialist literature – including new conjectures and discoveries – 

are presented in blue.  

The author is aware that the term ‘new-found’ in the title of this work has a limited 

shelf-life. What is still new today may, a few years from now, be ‘old hat’. Wherever 

possible, therefore, the author has appended a ‘time stamp’ to important statements 

and conjectures. 

Readers wishing to delve more deeply into the subject will find a list of suitable material 

in the Bibliography. 

 

 

 

2.1 MATHEMATICAL NOTATION USED IN THIS BOOK 

In this publication, besides the elementary mathematical symbols and functions, the 

following mathematical notation, symbols, function names and abbreviations will be 

used: 

Sets 

ℕ, ℤ, ℝ, ℂ:  set of the natural, whole, real and complex integers 

ℙ:   set of the prime numbers 

Operators and symbols 

𝑂(…):  further remainder terms of order (…) 

∑:   summation 

∏:   product 

𝑝𝑛:   nth prime number 

𝑛!:   factorial 

𝑝#:   product over all prime numbers 𝑝1 ⋅  𝑝2 ⋅  𝑝3 ⋅ … ⋅  𝑝𝑛 to 𝑝𝑛 =  𝑝 

𝐹𝑛:   nth Fermat number 

𝑀𝑛:  nth Mersenne prime number 

𝜌𝑛:   nth zero of the zeta function along the ‘critical’ line 

𝛾:   Mascheroni constant (aka Euler constant): 0.57721566… 
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B:  Brun’s constant (sum of the inverse twin primes): 

  1.90216054 

Π2:   twin prime constant: 0.6601618158 

∞:  infinity 

⌊𝑥⌋:  the same as floor(𝑥) : takes the integer part of 𝑥 

(
𝑛
𝑘
): binomial coefficients 

(𝑛,𝑚): greatest common divisor, also: gcd(𝑛,𝑚) 

gcd(𝑛,𝑚):  see also (𝑛,𝑚) 

lcm(n, m): least common multiple, in German: kgV(𝑛,𝑚) 

Functions 𝒇(𝒏) 

𝜇(𝑛):  Moebius function  

 𝜇(𝑛) = {(−1)
𝑘 𝑖𝑓 n square free, k: number of prime factors

0 otherwise
 

𝑀(𝑛):   Mertens function (summation over Moebius function) 

Λ(𝑛):   Von Mangold function 

  Λ(𝑛) = {ln
(𝑝) if 𝑛 =  𝑝𝑘, 𝑝 prime and 𝑘 > 0

0 otherwise
  

𝜑(𝑛):   Euler’s phi function (totient function) 

Φ(𝑛):  summatory function of 𝜑(𝑛) 

𝜎𝑘(𝑛):  sum of the 𝑘th powers of all positive divisors of 𝑛 

𝜎(𝑛):  = 𝜎1(𝑛) (generally called sigma function)  

𝑠(𝑛):  aliquot sum: sum of all divisors (without n), 𝑠(𝑛) = 𝜎1(𝑛) − 𝑛  

𝑟𝑘(𝑛): number of representations of 𝑛 as sum of k squares 

𝑟(𝑛):  = 𝑟2(𝑛) (number of 2-dim. lattice points on a circle with radius 𝑛) 

𝑟4(𝑛):  = 8 𝜎(𝑛) − 32𝜎 (
𝑛

4
) ,where (

𝑛

4
) = 0, if 4 ∤ 𝑛  

 number of 4-dim. lattice points of a 4-dim. sphere with radius 𝑛 

𝜏(𝑛):  Ramanujan tau function 

𝑐𝑞(𝑛):  Ramanujan sums 

ℱ𝑛:  Farey sequence of order 𝑛 
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𝜔(𝑛):  number of different prime factors of a number 𝑛 

Ω(𝑛):  number of prime factors of a number 𝑛 

Functions 𝒇(𝒙) 

𝜋(𝑥):   counting function for prime numbers: gives the number of prime 

numbers up to 𝑥. 

𝜋2(𝑥):  gives the number of twin primes up to 𝑥 

𝜋3(𝑥), 𝜋4(𝑥):  gives the number of prime triplets / quadruplets up to 𝑥 

𝜋𝑛(𝑥):  gives the number of prime n-tuplets up to 𝑥 

𝜋´𝑛(𝑥):  gives the number of prime pairs with difference n up to 𝑥  

𝜋0(𝑥):  same as 𝜋(𝑥), but different if x is a prime number: 

  𝜋0(𝑥) =  lim
𝜀→0

𝜋(𝑥−𝜀)+𝜋(𝑥+𝜀)

2
 or: 𝜋0(𝑝) =  𝜋(𝑝) −

1

2
 

Θ(𝑥), 𝜗(𝑥):  1st Chebyshev function: = ∑ ln (𝑝)𝑝≤𝑥  (sum over log values   

 of all prime numbers ≤ 𝑛)  

𝜓(𝑥):   Chebyshev psi function: summatory function of Von Mangoldt function 

𝜓(𝑥) =  ∑ ln(𝑝) =  ∑ Λ(𝑛)𝑛≤𝑥𝑝𝑘≤𝑥  (2nd Chebyshev func.) 

𝜓0(𝑥):  same as 𝜓(𝑥), but different if x is a prime number: 

  𝜓0(𝑥) =  lim
𝜀→0

𝜓(𝑥−𝜀)+𝜓(𝑥+𝜀)

2
 

휁(𝑠):   Riemann’s zeta function 

𝑃(𝑠):   prime zeta function 

𝜉(𝑠):   variant of Riemann’s zeta function (has the same zeros along the critical 

line as 휁(𝑠), but real function values) 

Γ(𝑠):   gamma function 

𝑅(𝑥):   Riemann function 

ln(𝑥) , Li(𝑥):  natural logarithm, integral logarithm 

Ei(𝑥):   integral exponential function 

E𝑛(𝑥):  exponential integral function of order n 

𝑍(𝑡), 𝜗(𝑡):  Riemann-Siegel functions 

𝐿(𝑠):   Ramanujan tau Dirichlet L function 
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𝑍(𝑡):   Ramanujan tau Z function 

Θ(𝑡):   Ramanujan tau theta function 

rad(𝑛):  radical: product of distinct prime factors: 

rad(𝑛) = ∏ 𝒑𝒑|𝒏
𝒑∈ℙ

  

ℨ(𝑝):  Z function 

Other abbreviations 

𝑜:  OCRON 

𝑔(𝑜):  Gödel number of an OCRON 

OEIS:  Online Encyclopedia of Integer Sequences (http://oeis.org) 

OCRON: ‘Operator Chain Representation Of Number’ 

GOCRON: ‘Gödelized Operator Chain Representation Of Number’ 

EOCRON: “Enhanced” OCRON, also EOCRON4, EOCRON6… (types) 

EGOCRON: “Enhanced” GOCRON, also EGOCRON4, EGOCRON6… (types) 

RG numbers: sequence built by recursive application of the algorithm used for 

computing Gödel numbers 

 

http://oeis.org/
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3 BASICS OF PRIME NUMBERS  

Let us begin, first of all, with some important fundamental statements about prime 

numbers such as can be found in any handbook for mathematical beginners: 

- A prime number is a natural number greater than 1 that has exactly two integer 

divisors: ‘1’ and the number itself. Prime numbers are not divisible by any other 

integers. 

- The first prime numbers read: 2,3,5,7,11,13,17,19,… etc. The sequence of prime 

numbers starts with 2 and not with 1. 

- Prime numbers become rarer the further we ascend in the number region2. This 

raises the question as to whether there exists a last, greatest prime number. 

However, as the ancient Greek mathematician Euclid proved 2000 years ago: 

- There are infinitely many prime numbers. Euclid’s proof is so easy to understand 

that it can be stated in a few lines: 

First, let us suppose the opposite of Euclid’s statement: that there exists a greatest prime 

number 𝑝𝑛. Next build the product from all 𝑛 prime numbers and add 1: 

𝑁 = 𝑝1 ⋅  𝑝2 ⋅  𝑝3 ⋅ … ⋅  𝑝𝑛 + 1  
 

Obviously, 𝑁 is much greater than 𝑝𝑛  and must be therefore be divisible, as we have 

assumed a greatest prime number 𝑝𝑛 < 𝑁. After a moment’s reflection, it will be clear 

that 𝑁 cannot be divisible by 2, nor by 3, 5 …It cannot be divisible by any of the primes 

𝑝𝑛. Thus 𝑁 must be a prime number or must be divisible by a prime number 𝑝 >  𝑝𝑛. 

This is, however, a contradiction to our assumption. Thus the assumption of the existence 

of a greatest, last prime number 𝑝𝑛 is wrong! 

The set ℙ of prime numbers can be easily extended to the Gaussian complex numbers, 

leading to the set of ‘Gaussian primes’. ‘Primality’ can also be generalized and defined 

for other sets of elements. These are commonly called ‘prime elements’. 

A book about prime numbers deserves at least a few lists of prime numbers (generated by 

Mathematica): 

 

 

 
2 Please refer to the table: ‘number of primes…’ in the Appendix 
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We see that prime numbers become gradually less frequent: in the range 1 to 100 we 

have 25 prime numbers, from 10000 to 10100 there are still 11, and in the region 

between 1020 and 1020 + 100 there is only one prime number! 

 

Mathematica offers many ways to generate prime numbers, e.g. for the region between 

109 and 109 + 100:  

Reduce[10^9<x<10^9+100,x,Primes] 
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3.1 QUICK START: WHAT DO WE KNOW FOR CERTAIN? 

Below, the reader will find a shortened description of the most important theorems about 

prime numbers and arithmetical functions related to them that are proven (as of Nov. 

2016): 

1. There are infinitely many prime numbers. 

2. Each integer that is composite (i.e. not a prime number) can be unambiguously 

represented as a product of at least two prime numbers. 

3. The number of primes 𝜋(𝑛) denotes the number of primes that exist up to a limit 

𝑛 . For 𝜋(𝑛)  there exist many (more or less precise) estimates that make it 

possible to compute 𝜋(𝑛) approximately. There are also exact formulae for 𝜋 (𝑛) 
(see 8.6). 

4. For computing the 𝑛th prime number, formulae also exist for an approximate 

calculation, however, also exact formulae (see ‘Formulae for calculating the nth 

prime number‘). 

5. The ‘gaps’ between adjacent prime numbers can be of any size. The largest gap 

currently known includes an area of 3.311.852 consecutive composite numbers 

(as of Oct. 2015). 

6. The sum of the reciprocals of all prime numbers diverges (goes towards infinity). 

7. The largest currently known prime number is: 2𝟖𝟐𝟓𝟖𝟗𝟗𝟑𝟑 − 1. It has 24862047 

digits if written in the decimal system (as of Dec. 2020). 

8. There exists no arithmetic sequence of integer numbers that delivers only prime 

numbers, such as for example Euler’s formula 𝑛2 + 𝑛 + 41, which generates 

only prime numbers for 0 ≤ 𝑛 < 40 but not for 𝑛 =  40! However it remains 

true that many arithmetic sequences create (among others) infinitely many prime 

numbers. 

9. Currently there are 51 known Mersenne prime numbers. The first Mersenne 

prime exponents are: 

2, 3, 5, 7, 13, 17, 19, 31 (sequence A000043 in OEIS) (as of Dec. 2020). 

10. If 𝑀𝑝 is a prime, then 𝑝 is also a prime. 

11. Currently there are 5 known Fermat primes 𝐹𝑛 = 2
2𝑛 + 1 (n = 0 … 4) These 

are: 

3, 5, 17, 257, 65537 (sequence A000215 in OEIS) (as of Nov. 2016). 

𝐹5 to 𝐹32 are composite numbers. 𝐹33 is the first Fermat number of which it is not 

known whether it is composite or prime (as of Nov. 2016). 

12. Each even perfect number 𝑁 (i.e. the sum of its positive divisors without 𝑁 gives 

𝑁) has the form 2𝑛−1(2𝑛 − 1)in which 2𝑛 − 1is prime, i.e. to each Mersenne 

prime number belongs a perfect number!! 

13. If 𝜙(𝑛) +  𝜎(𝑛) = 2 𝑛, 𝑛 ≥ 2 , then 𝑛  is a prime number, in which 𝜙(𝑛)  is 

Euler’s totient function and 𝜎(𝑛) the ‘sum-of-divisors function’. 

14. If (
𝑛 − 1
𝑘
) ≡ (−1)𝑘 (mod 𝑛), then 𝑛 is a prime number, of which (

𝑛
𝑘
) are the 

binomial coefficients. 

15. For each prime number 𝑝, the following relations to the 𝜎 function obtain: 

𝜎0(𝑝) = 2 (Each prime number has only two divisors: itself and 1) 

𝜎0(𝑝
𝑛) = 𝑛 + 1  

𝜎1(𝑝) = 𝑝 + 1  

https://oeis.org/A000043
http://oeis.org/A000215
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3.2 QUICK START: WHAT ARE OUR (UNPROVEN) CONJECTURES? 

Here are (in shortened form) the most important statements and conjectures about prime 

numbers and about the closely related zeta function that are probably true but still 

unproved (as of Nov. 2016): 

1. Each even natural number 𝑛 > 2 can be represented as the sum of two prime 

numbers (strong Goldbach conjecture). This conjecture has been numerically 

verified up to 𝑛 < 4 ⋅ 1018 (as of Apr. 2012). 

2. Each odd natural number > 5 can be represented as the sum of three prime 

numbers (weak Goldbach conjecture). This has been proved for 𝑛 > 1043000! 

3. Between 𝑛2  and (𝑛 + 1)2  there exists at least 1 prime number (Oppermann’s 

conjecture, 1882). 

4. The ‘non-trivial’ zeros of the zeta function are all located in the Gaussian 

complex plane on a straight line having a real part of 0.5. This is the famous 

Riemann conjecture, which Riemann formulated in the year 1859, and which 

remains unproved to this day (as of Nov. 2016). It ranks among the ‘Top Seven 

unsolved mathematical problems’. A reward of one million US dollars has been 

offered for its solution. The conjecture has been numerically verified up to the 

first 1013 . Thus there is overwhelming numerical evidence for the truth of 

Riemann’s conjecture. 

5. There are infinitely many Mersenne prime numbers (numbers of the form 𝑀𝑝 =

2𝑝 − 1). 

6. There are infinitely many composite Mersenne numbers. 

7. There are only five Fermat prime numbers. 

8. There are no odd perfect numbers (see above). 

9. The ‘new Mersenne conjecture’: 

if any two of the following conditions hold, then the third condition is also true: 

- 𝑛 = 2𝑘 ± 1 or 𝑛 = 4𝑘 ± 3 

- 2𝑛 − 1 is prime (obviously a Mersenne prime) 

- 
(2𝑛+1) 

3
is prime 

10. There are infinitely many twin prime numbers. Twin primes are prime numbers 

having a difference of 2. It is known that the sum of the reciprocals of the twin 

primes converges (Brun’s constant: 1.902160577783278, proved by Brun in 

1919).  

11. The number 𝑁𝑀𝑝of Mersenne prime numbers that are smaller than or equal to N 

is given asymptotically by the formula: 𝑁𝑀𝑝(𝑁)~
𝑒𝛾

ln(2)
ln ln(𝑁). 

12. The final digits of consecutive prime numbers show striking correlations. 
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3.3 QUICK START: WHAT IS STILL UNSOLVED? 

Here are (in a shortened form) the most important unsolved questions about prime 

numbers and related topics, of which we have no idea whether they are wrong or right: 

1. Are all Mersenne numbers 𝑀𝑝 = 2
𝑝 − 1 square-free, i.e. does their prime factor 

decomposition contain each factor only once? 

2. Are there infinitely many prime number 𝑁 -tuplets? (These are tuplets of 𝑛 

consecutive prime numbers having minimal differences, as defined in Chapter 

4.3). 

3. Are there infinitely many ‘Wagstaff’ prime numbers, i.e. prime numbers of the 

form 
(2𝑝+1) 

3
 (with 𝑝 being an odd prime number)? 

4. Are there infinitely many ‘Sophie Germain’ prime numbers, i.e. prime numbers 

of the form 2𝑝 + 1 (with 2𝑝 + 1 as a ‘safe prime’ and 𝑝 as the ‘Sophie Germain’ 

prime)? 

5. Are there infinitely many ‘Fibonacci’ primes, i.e. prime numbers occurring in the 

Fibonacci sequence? 

6. Does the ‘Euclid-Mullin sequence’ contain all prime numbers? 

7. Does there exist an efficient factorizing method for the prime factor 

decomposition of large numbers, i.e. a procedure that accomplishes the 

factorization process in ‘polynomial time’? Because no such a method is currently 

known, it is still impossible to factorize large numbers (as the computing time 

required would be astronomically high). Currently the fastest known methods of 

factorization are the ‘number field sieve (Pomerance et. al.) and the method using 

elliptic curves (as of Nov. 2016). 
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3.4 QUICK START: WHAT IS NEW? 

1) A new property of the Fibonacci numbers (see 4.10). 

2) Properties of the Reed Jameson sequence and its relation to prime numbers (see 

4.10.1). 

3) RG number sequences (recursive ‘Gödelized’) sequences (see 4.17). 

4) ‘Fun and games’ with the product representation of the 휁(𝑠)  in the complex 

domain (see 5.3). 

5) ℨ(𝑠): a ‘function’ having minima that are located at the prime positions (see 5.3). 

6) The Reed Jameson function: zeros at the prime number positions (see 8.5.1). 

7) Prime numbers and surfaces of 4-dimensional hyperspheres (glomes) (see 9.3). 

8) Of OCRONs and GOCRONs (see Chapter 10). 

9) Is it possible to find (typographic) prime number rules using the Matrix software? 

(Chapter 11). 

10) An equation for a plane as a link between GOCRONs and the abc conjecture (see 

12.1). 

11) Prime numbers as rhythmic patterns (Chapter 15.2). 

12) Differences and quotients of aliquot sequences (Chapter 20.9.2.5). 
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4 SPECIAL KINDS OF PRIME NUMBERS 

4.1 TWIN PRIMES  

Twin primes are prime numbers having a difference of 2. The following applies: 𝑛 and 

𝑛 + 2 are twin primes if and only if the following equation obtains: 

𝟒[(𝒏 − 𝟏)! + 𝟏] + 𝒏 ≡ 𝟎 [𝐦𝐨𝐝 𝒏(𝒏 + 𝟐)] (1) 

 

𝝓(𝒏)𝝈(𝒏) = (𝒏 − 𝟑)(𝒏 + 𝟏),𝐰𝐡𝐞𝐫𝐞 𝒏
= 𝒑(𝒑 + 𝟐) (product of a twin prime pair) 

(2) 

 

(𝒏, 𝒏 + 𝟐) are twin primes if 

∑𝒊𝒂 (⌊
𝒏 + 𝟐

𝒊
⌋ + ⌊

𝒏

𝒊
⌋) = 𝟐 + 𝒏𝒂 +∑𝒊𝒂

𝒏

𝒊=𝟏

(⌊
𝒏 + 𝟏

𝒊
⌋ + ⌊

𝒏 − 𝟏

𝒊
⌋)

𝒏

𝒊=𝟏

 

where 𝑎 ≥ 0 and ⌊ ⌋ is the floor() function. 

(3) 

 

Unfortunately these formulae are not practicable for the computation of twin prime 

numbers.  

Let 𝜋2(𝑥) be the number of twin primes up to a given limit 𝑥. 
Since the 19th century the following estimate has been accepted: 

  

𝜋2(𝑥) ≤ 𝑐Π2
𝑥

(ln 𝑥)2
  (4) 

 

Hardy and Littlewood have conjectured that c = 2 and 

 

 

𝝅𝟐(𝒙)~𝟐𝚷𝟐∫
𝒅𝒕

(𝐥𝐧 𝐭)𝟐

𝒙

𝟐

= 𝟐𝚷𝟐(𝐋𝐢(𝒙) −
𝒙

𝐥𝐧(𝒙)
− 𝑳𝒊(𝟐) +

𝟐

𝐥𝐧 (𝟐)
) (5) 

 

using the twin prime constant: 

 

𝚷𝟐 =∏
𝒑(𝒑 − 𝟐)

(𝒑 − 𝟏)𝟐
𝒑≥𝟑

= 0.6601618158 

𝟐𝚷𝟐 = 𝟏. 𝟑𝟐𝟎𝟑𝟐𝟑𝟔𝟑𝟏𝟔 

 

The sum of the reciprocals of all twin primes converges (Brun’s constant, proved by Brun 

in 1919). 
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𝐵 = ∑ (
1

𝑝
+

1

𝑝 + 2
) = 1.90216054

𝑝=𝑡𝑤𝑖𝑛

 (6) 

 

Table 1. Number of twin primes and values of the Hardy-Littlewood function 

𝒏   𝝅𝟐(𝟏𝟎
𝒏)  Hardy-Littlewood   

1  2  4.84   

2  8  13.54   

3  35  45.80   

4  205  214.21   

5  1224  1248.71   

6  8169  8248.03   

7  58980  58753.82   

8  440312  440367.79   

9  3424506  3425308.16   

10  27412679  27411416.53   

11  224376048  224368864.67   

12  1870585220  1870559866.69   

13  15834664872  15834598303.94   

14  135780321665  135780264884.86   

15  1177209242304  1177208491777.05   

16  10304195697298  10304192553765.33   

17  90948839353159  90948833254536.36   

18  808675888577436 808675901436127.88   

 

For 𝑛 = 1018 this approximation given by Hardy-Littlewood is exact up to an error of  

 1.59 ⋅ 10−8 :   
𝜋2(10

18)

𝜋2𝑎𝑝𝑝𝑟𝑜𝑥(10
18)
= 0.999999984 

This matching of the approximations with the exact values for large 𝑛 is remarkable and 

could be interpreted as a ‘numerical proof’ of the infinite number of twin primes (Chapter 

4.1). 

 

Mathematica program for creating the table: 

ile = 2; Do[Do[If[(PrimeQ[2 n - 1]) && (PrimeQ[2 n + 1]), ile = ile + 

1], {n, 5*10^m, 5*10^(m + 1)}]; Print[{m, ile}], {m, 0, 7}] 
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Here is a comparison of the exact values with the Hardy-Littlewood formula for the first 

3500 twin primes (blue: exact, yellow: Hardy-Littlewood) : 

 

Figure 1. Number of twin primes from 2 to 3500 

The Mathematica program to create the plot can be found in the Appendix3. The 

following Mathematica program can be used to compute twin primes (e.g. up to 10000): 

Select[Range[10000],(PrimeQ[#]&&PrimeQ[#+2])&] 

The largest known twin prime pair is 𝟑𝟕𝟓𝟔𝟖𝟎𝟏𝟔𝟗𝟓𝟔𝟖𝟓 ⋅ 𝟐𝟔𝟔𝟔𝟔𝟔𝟗 ± 𝟏 

(in decimal form: 𝟖. 𝟕𝟐𝟗𝟔𝟔𝟓𝟎𝟕𝟖𝟕𝟑𝟎𝟑𝟐𝟖𝟎𝟗𝟏𝟑𝟏𝟒𝟓𝟓𝟕𝟐𝟔𝟖𝟕𝟒 × 𝟏𝟎𝟐𝟎𝟎𝟔𝟗𝟗) 

(as of Oct. 2015). 

Polignac’s conjecture: 

This conjecture says that for every even number 𝑛, there exist infinitely many pairs of 

prime numbers with difference 𝑛. For 𝑛 = 2 we get the special case of the twin primes. 

The Hardy-Littlewood conjecture may be generalized also for this case: 

𝝅´𝒏(𝒙)~𝟐𝐂′𝒏∫
𝒅𝒕

(𝐥𝐧 𝐭)𝟐

𝒙

𝟐

= 𝟐𝐂′𝒏 (𝐋𝐢(𝒙) −
𝒙

𝐥𝐧(𝒙)
− 𝑳𝒊(𝟐) +

𝟐

𝐥𝐧(𝟐)
) (7) 

 

where 

C′𝑛 = Π2∑
𝑞− 1

𝑞 − 2
𝑞|𝑛

 (8) 

 
3 Mathematica programs: comparison of the number of twin, cousin and sexy primes with the 
Hardy-Littlewood formula  
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Special cases: 

𝑛 = 4: Cousin primes: here we have C′4 = C′2 = C2 primes (with difference 4) and twin 

primes have the same asymptotic density. There exist the same number of instances of 

both kinds!! 

𝑛 = 6: Sexy primes: here we have C′6 = 2C′2primes (with difference 6) having an 

asymptotic density twice as high as twin primes. There exist twice as many sexy primes 

as twin primes!! 

 

4.2 PRIME TRIPLETS AND QUADRUPLETS 

For prime triplets and prime quadruplets there also exist approximations (Hardy-

Littlewood conjecture) for the number of triplets and quadruplets up to a given limit x:  

Triplets 

𝝅𝟑(𝒙) ≤
𝟗

𝟐
∏

𝒑𝟐(𝒑 − 𝟑)

(𝒑 − 𝟏)𝟑
𝒑≥𝟓

∫
𝒅𝒕

(𝐥𝐧 𝐭)𝟑

𝒙

𝟐

= 𝟐. 𝟖𝟓𝟖𝟐𝟒𝟖𝟓𝟗𝟔∫
𝒅𝒕

(𝐥𝐧 𝐭)𝟑

𝒙

𝟐

 (9) 

 

In expanded form: 

𝝅𝟑(𝒙)~𝟐. 𝟖𝟓𝟖𝟐𝟒𝟖𝟓𝟗𝟔 (
𝟏

𝟐
𝐋𝐢(𝒙) −

𝒙

𝟐𝐥𝐧𝟐(𝒙)
−

𝒙

𝟐 𝐥𝐧(𝒙)
+

𝟏

𝐥𝐧(𝟐)

+
𝟏

𝐥𝐧𝟐(𝟐)
−
𝟏

𝟐
𝐋𝐢(𝟐)) 

(10) 

or 

𝝅𝟑(𝒙)~𝟐. 𝟖𝟓𝟖𝟐𝟒𝟖𝟓𝟗𝟔 [𝐥𝐧
−𝟐(𝒙) (−𝐄𝟑(−𝐥𝐧(𝒙)))

− 𝐥𝐧−𝟐(𝟐) (−𝐄𝟑(−𝐥𝐧(𝟐)))] 
(11) 

 

The largest currently known prime triplet is 

 𝟔𝟓𝟐𝟏𝟗𝟓𝟑𝟐𝟖𝟗𝟔𝟏𝟗 ⋅ 𝟐𝟓𝟓𝟓𝟓𝟓  +  𝒅, 𝒅 =  −𝟓,−𝟏, 𝟏 (having 16737 decimals) 
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Table 2. Number of prime triplets and values of the Hardy-Littlewood function
4

 

𝒏 
 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

𝝅𝟑(𝟏𝟎
𝒏) 

  

1 

4 

15 

55 

259 

1393 

8543 

55600 

379508 

2713347 

20093124 

152850135 

1189795268 

9443899421 

76218094021 

624026299748 

Hardy-Littlewood 

 
8.49 

13.86 

25.57 

69.34 

279.36 

1446.17 

8591.23 

55490.86 

379802.73 

2715291.84 

20089653.88 

152830566.82 

1189763105.37 

9443890414.16 

76217780005.59 

624025187564.06 

H-L / 𝝅𝟑(𝟏𝟎
𝒏) 

 

8.490 

3.465 

1.70467 

1.26073 

1.07861 

1.03817 

1.00565 

0.99804 

1.00078 

1.00072 

0.99983 

0.99997 
0.999999 

0.999999 

0.999996 

0.999998 

 

The matching of the approximations with the exact values for large 𝑛 is remarkable.  

Mathematica program for creating the approximate values: 

ch=2.858248596; (*Pi3!*) 

n=3; 

Do[Print[N[Re[SetPrecision[ch,50]*((Log[10^i])^(1-n)(-ExpIntegralE[n,-

Log[10^i]])-(Log[2])^(1-n)(-ExpIntegralE[n,-Log[2]]))],{Infinity,3} 

]],{i,1,16}] 

 

Quadruplets 

𝝅𝟒(𝒙) ≤
𝟐𝟕

𝟐
∏

𝒑𝟑(𝒑 − 𝟒)

(𝒑 − 𝟏)𝟒
𝒑≥𝟓

∫
𝒅𝒕

(𝐥𝐧 𝐭)𝟒

𝒙

𝟐

= 𝟒. 𝟏𝟓𝟏𝟏𝟖𝟎𝟖𝟔𝟒∫
𝒅𝒕

(𝐥𝐧 𝐭)𝟒

𝒙

𝟐

 (12) 

 

or 

𝝅𝟒(𝒙)~𝟒. 𝟏𝟓𝟏𝟏𝟖𝟎𝟖𝟔𝟒 [𝐥𝐧
−𝟑(𝒙) (−𝐄𝟒(−𝐥𝐧(𝒙)))

− 𝐥𝐧−𝟑(𝟐) (−𝐄𝟒(−𝐥𝐧(𝟐)))] 
(13) 

 

 
4 Source: Thomas R.Nicely, http://www.trnicely.net/quads/t3a_0000.htm 

http://www.trnicely.net/quads/t3a_0000.htm
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Table 3. Number of prime quadruplets and values of the Hardy-Littlewood function5 

𝒏 
 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

𝝅𝟒(𝟏𝟎
𝒏) 

  

 1 

 2 

 5 

 12 

 38 

 166 

 899 

 4768 

 28388 

 180529 

 1209318 

 8398278 

 60070590 

 441296836 

 3314576487 

 25379433651 

 

Hardy-Littlewood 

 
11.29 

13.60 

16.49 

24.17 

52.88 

183.68 

862.95 

4734.64 

28396.84 

181074.93 

1209956.22 

8394578.03 

60075438.37 

441290732.40 

3314550290.38 

25379441340.00 

H-L / 𝝅𝟒(𝟏𝟎
𝒏) 

 
11.29 

6.80 

3.30 

2.01 

1.39 

1.1065 

0.9599 

0.99300 

1.00031 

1.00302 

1.00053 

0.99956 

1.00008 

0.999986 

0.999992 

1.0000000 

 

Here, too, the matching of the approximations with the exact values for large 𝑛 is 

remarkable.  

 

Mathematica program for creating the approximate values: 

ch=4.151180864; (*Pi4!*) 

n=4; 

Do[Print[N[Re[SetPrecision[ch,50]*((Log[10^i])^(1-n)(-ExpIntegralE[n,-

Log[10^i]])-(Log[2])^(1-n)(-ExpIntegralE[n,-Log[2]]))],{Infinity,3} 

]],{i,1,16}] 

 

The largest prime quadruplet currently known is (Source: Thomas Forbes6)  

𝟐𝟔𝟕𝟑𝟎𝟗𝟐𝟓𝟓𝟔𝟔𝟖𝟏 ⋅ 𝟏𝟓𝟑𝟎𝟒𝟖 + 𝒅, 𝒅 = −𝟒,−𝟐, 𝟐, 𝟒

= 𝟏. 𝟒𝟐𝟐𝟖𝟗𝟎𝟖𝟖𝟖𝟑𝟐𝟗𝟐𝟏𝟕𝟎𝟖𝟗𝟒𝟒𝟖𝟒𝟒𝟑𝟔𝟗𝟏𝟔𝟐 ⋅ 𝟏𝟎𝟑𝟓𝟗𝟕 

(as of Oct. 2015). 

4.3 PRIME  N-TUPLETS 

A prime n-tuplet is generally defined as a sequence of consecutive primes 

(𝑝1, 𝑝2, 𝑝3, … 𝑝𝑛) with a fixed minimal value for the difference between the smallest and 

the largest prime 𝑠(𝑛) = 𝑝𝑛 − 𝑝1 (see table below). For example, 𝑠(4) = 8  for 

quadruplets or 𝑠(5) = 12 for quintuplets. Generally, there exist more solutions for the 

 
5 Source: Thomas R.Nicely, http://www.trnicely.net/quads/t4_0000.htm 
6 http://anthony.d.forbes.googlepages.com/ktuplets.htm 

http://www.trnicely.net/quads/t4_0000.htm
http://anthony.d.forbes.googlepages.com/ktuplets.htm
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corresponding sequence for a given prime n-tuplet with a fixed 𝑠(𝑛). For example, prime 

triplets can have two different forms: (𝑝, 𝑝 + 2, 𝑝 + 6) and (𝑝, 𝑝 + 4, 𝑝 + 6) . This 

degeneration grows quite fast with the length 𝑛  of the 𝑛-tuplets. So, for 𝑛 = 13, the 

degeneration is already 6; for 𝑛 = 25, we have a degeneration of 18 distinct ordering 

possibilities for a prime number 25-tuplet where s(25) = 110.  
 

In order to avoid this ambiguity or degeneration, we use here another definition of the 

term ‘prime n-tuplet’. We construct a sequence of primes assuming that it is located in an 

arbitrarily high number region, having a maximal density of prime numbers by using the 

following principle of construction (this method bears a certain similarity to the ‘Sieve of 

Eratosthenes’): 

1) We begin with a new list, assuming that the first element of this list is any 

arbitrarily large prime number 𝒑 (obviously an odd number). We mark this 

first list element with ‘𝒑’. All other list elements are still unoccupied (‘free’). 

2) We set 𝒏 = 𝟏 (thus 𝒑𝒏 = 𝟐, is the first prime number)  

3) As long as in the range between 𝒑 𝐚𝐧𝐝 𝒑 + 𝒑𝒏 − 𝟏 (between the first and the 

𝒑𝒏 -th element) there still exist more than one list element which could be 

divisible by 𝒑𝒏 (i.e. all elements following with difference 𝒊 ⋅ 𝒑𝒏 do not ‘collide’ 

with a ‘𝒑-marked’ element) we reduce this ambiguity more and more by 

marking the next free (not yet marked with a divisor number or a ‘𝒑’) position 

with a ‘𝒑’. 

4) Now, between 𝒑 𝐚𝐧𝐝 𝒑 + 𝒑𝒏 − 𝟏 (𝐛𝐞𝐭𝐰𝐞𝐞𝐧 𝐭𝐡𝐞 𝐟𝐢𝐫𝐬𝐭 𝐚𝐧𝐝 𝐭𝐡𝐞 𝒑𝒏𝐭𝐡) element 

there exists only one list element 𝒑 + 𝒋, which is divisible by 𝒑𝒏. We sieve (i.e. 

mark with the value of 𝒑𝒏) all following numbers (list elements) 𝒑 + 𝒋 + 𝒊 ⋅
𝒑𝒏, 𝒊 = 𝟎, 𝟏, …∞ 

5) We set the next possible prime number at the next free list position and mark 

this element with a ‘𝒑’. 

6) We increase our counter 𝒏 = 𝒏 + 𝟏 and continue with instruction 3). 

Thus we get a sequence of (possible) prime numbers (with list positions marked by ‘ 𝑝’), 

which represent the maximal possible density of prime numbers (independent of the 

number region in which we have started): 

𝒑, 𝒑 + 𝟐, 𝒑 + 𝟔, 𝒑 + 𝟖, 𝒑 + 𝟏𝟐, 𝒑 + 𝟏𝟖, 𝒑 + 𝟐𝟎, 𝒑 + 𝟐𝟔, 𝒑 + 𝟑𝟎, 𝒑 + 𝟑𝟐, 𝒑 + 𝟑𝟔, 𝒑 +
𝟒𝟐, 𝒑 + 𝟒𝟖, 𝒑 + 𝟓𝟎, 𝒑 +56,𝒑 + 𝟔𝟐, 𝒑 + 𝟔𝟖, 𝒑 + 𝟕𝟐, 𝒑 + 𝟕𝟖, 𝒑 + 𝟖𝟔, 𝒑 + 𝟗𝟎 

The prime number tuplets created by this principle of construction differ from the table 

of prime n-tuplets T. Forbes used7. The numbers have the meaning of indices 𝒊 for (𝒑 +
𝒊): 

6-tuplet:  (0-2-6-8-12-18)  

Forbes:  (0-4-6-10-12-16) 

16-tuplet:  (0-2-6-8-12-18-20-26-30-32-36-42-48-50-56-62) 

 
7 http://anthony.d.forbes.googlepages.com/ktuplets.htm 

http://anthony.d.forbes.googlepages.com/ktuplets.htm
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Forbes: (0-4-6-10-16-18-24-28-30-34-40-46-48-54-58-60) 

 or (0-2-6-12-14-20-26-30-32-36-42-44-50-54-56-60) 

From the 16-tuplets on, differences become more and more frequent. 

It is interesting that this principle of construction, which creates a maximal prime number 

density for arbitrarily high number regions, results in the same prime number sequence 

as the prime number sequence from the number 11. At least, at first glance… If we take 

a closer look, we notice that the prime number 𝟕𝟏 is missing (it should be at position 60 

in our list)! The only possible and plausible interpretation is that, for sufficiently 

large number regions, there cannot exist any prime 16-tuplets of the form (0-2-6-8-

12-18-20-26-30-32-36-42-48-50-56-60) (as represented by the ‘natural’ prime 

sequence running from 11 to 71). Above 100, more deviations occur from the 

‘natural’ prime sequence. 

It is also obvious that if we continue this principle of prime construction further and 

further, the resulting prime number n-tuplets will be more and more spaced out (compared 

with the natural prime sequence starting from the number 11). This is, of course, 

reasonable: nobody would expect that all the prime ‘constellations’ of small numbers 

would also appear infinitely often in arbitrarily high regions! 

. 

Conclusion: not only prime constellations within the first 10 natural numbers are 

unique. For numbers larger than 𝟏𝟏 there are also prime constellations that 

appear only one time (that are unique).  

Note: The resulting sequence of possible prime positions having a maximal density 

reads: 

{1,3,7,9,13,19,21,27,31,33,37,43,49,51,57,63,69,73,… } and it is well-known (see 

A020498 at https://oeis.org). 

Let us take a look at the sequences of the differences, obtained after sieving up to prime 

no. 𝑛. These sequences can be easily obtained by using the following formula: 

RotateRight[Differences[Select[Range[primorial[𝑛]+1],GCD[#,

primorial[𝑛]]==1&]],nRotation] 

The sequences have cycles of increasing lengths. The parameter ‘nRotation’ can be 

taken from the following table, primorial[n] is the product of the first 𝑛 primes. 

The cycle lengths can also be easily calculated by the formula: 

a(0)=1;for n>0,a(n)=(prime(n)-1)*a(n-1) 

Mathematica: 

RecurrenceTable[{a[0]==1,a[n]==(Prime[n]-1)a[n-1]},a,{n,10}] 

 

https://oeis.org/
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The patterns resulting from the differences of the positions (generated by sieving) repeat 

after the following cycles: 

n Sieving up to 

prime no. n 

Length 

of cycle 

Parameter for 

RotateRight[] 

Sequences 

(start and end) 

1 2 1 0 2 

2 3 2 1 2,4 

3 5 8 6 2,4,2,4,6,2,6,4 

4 7 48 47 2,4,2,4,6,2,6,4,2,4,6,6,2,6,4,…,10,2,10 

5 11 480 218 2,4,2,4,6,2,6,4,2,4,6,6,2,6,6,…,10,2,10 

6 13 5760 2861 2,4,2,4,6,2,6,4,2,4,6,6,2,6,6,…,10,2,10 

7 17 92160 2695 (as above) 

8 19 1658880 ??? (as above) 
Figure 1: Lengths of cycles by the sieve method for generating max. prime number density  

 

The sieving process becomes more clear if we take a look at the following table (see 

appendix for the Mathematica program used). The yellow cells mark the possible 

positions of primes that can occur in any arbitrarily high number regions. The first line 

shows the result with existing primes if we start from the number 11. The first deviation 

occurs at the number 71. More deviations follow if we go to higher regions. 

 

 

Figure 2: Sieving method for generating a maximal prime densi ty 
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The web site of T. Forbes is a true treasure for this topic. The following formulae have 

been taken in large part from his web site. 

We generalize the estimate from Hardy-Littlewood for 𝑛 (prime n-tuplets). The result is: 

𝝅𝒏(𝒙)~𝑪𝒏 [𝐥𝐧
𝟏−𝒏(𝒙) (−𝐄𝒏(−𝐥𝐧(𝒙))) − 𝐥𝐧

𝟏−𝒏(𝟐) (−𝐄𝒏(−𝐥𝐧(𝟐)))] (14) 

 

with the constants 𝑪𝒏. Here 𝐄𝒏() is the integral exponential function of order 𝑛. 

The constants 𝑪𝒏 can be computed as follows: 

 

𝑪𝒏 = 𝑯𝒏 ⋅  𝑲𝒏 

where 

 

𝑲𝒏 = ∏
𝒑𝒏−𝟏(𝒑 − 𝒏)

(𝒑 − 𝟏)𝒏
𝒑≥𝒏+𝟏

 (15) 

 

Finally, here is a formula for the 𝑪𝒏 that converges much faster: 

𝐥𝐧(𝑪𝒌) = ∑ 𝐥𝐧 [𝜻(𝒏) ∏ (𝟏 −
𝟏

𝒑𝒏
)

𝒑 𝒑𝒓𝒊𝒎𝒆,𝒑≤𝒌

]

∞

𝒏=𝟐

/𝒏 ⋅∑𝝁(
𝒏

𝒅
)

𝒅|𝒏

(𝒌𝒅 − 𝒌) 

 

(16) 
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Table 4. The Hardy-Littlewood constants 

Name Differences, 𝑝𝑚𝑎𝑥 −
𝑝𝑚𝑖𝑛 

𝐻𝑛 𝐾𝑛 𝑪𝒏 

Twins 2 (2) 2 0.66016182 1.3203236 
Triplets 2-4 (6) 9

2
 

0.63516635 2.8582486 

Quadruplets 2-4-2 (8) 27

2
 

0.30749488 4.1511809 

5-tuplets 2-4-2-4 (12) 154

211
 

0.40987489 10.131795 

6-tuplets 

(*) 
4-2-4-2-4 (16) 155

213
 

0.18661430 17.298612 

6-tuplets 2-4-2-4-6 (18) ?

?
 

? ? 

7-tuplets 2-4-2-4-6-2 (20) 356

3 ⋅ 222
 

0.36943751 53.971948 

8-tuplets 2-4-2-4-6-2-6 (26) 56 ⋅ 77

224
 

0.23241933 178.26195 

9-tuplets 2-4-2-4-6-2-6-4 (30) 59 ⋅ 78

231
 

0.12017121 630.06436 

10-tuplets 2-4-2-4-6-2-6-4-2 (32) 510 ⋅ 79

9 ⋅ 230
 

0.041804051  1704.7409 

11-tuplets 2-4-2-4-6-2-6-4-2-4 
(36) 

711 ⋅ 1110

45 ⋅ 245
 

0.094530829  3062.0793 

12-tuplets 2-4-2-4-6-2-6-4-2-4-6 
(42) 

712 ⋅ 1111

25 ⋅ 249
 

0.035393260  9931.3156 

 

 

Table 5. Number of prime quintuplets and values of the Hardy-Littlewood function 

𝒏 
 

1 

2 

3 

4 

5 

6 

7 

8 

9 

9.59868 

10 

11 

12 

13 

14 

𝝅𝟓(𝟏𝟎
𝒏) 

  

1 

2 

3 

4 

10 

34 

160 

697 

3633 

10000 

20203 

Hardy-Littlewood 

 
27.93 

14.84 

30.90 

33.17 

39.79 

64.49 

173.20 

711.00 

3615.11 

10094.08 

20401.37 

122857.37 

776698.49 

5.10724390*10^6 

3.4706125667*10^7 

H-L / 𝝅𝟓(𝟏𝟎
𝒏) 

 
- 

7.42 

10.30 

8.29 

3.98 

1.90 

1.0825 

1.02009 

0.99508 

1.00941 

1.00982 

? 

? 

? 

? 
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15 

16 

2.42544985095*10^8 

1.73651359676*10^9 

? 

 

Mathematica program for generating the approximations: 

ch=10.131795; (*Pi5!*) 

n=5; 

Do[Print[N[Re[SetPrecision[ch,50]*((Log[10^i])^(1-n)(-ExpIntegralE[n,-

Log[10^i]])-(Log[2])^(1-n)(-ExpIntegralE[n,-Log[2]]))],{Infinity,3} 

]],{i,1,16}] 

 

(Values in blue have been calculated analytically using the Hardy-Littlewood formula 

and are not exact!…) 

Table 6. Number of prime n-tuplets dependent upon n 

𝒏 
 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

𝝅𝒏(𝟏𝟎
𝟑) 

  

168 

35 

15 

5 

3 

2 

 

𝝅𝒏(𝟏𝟎
𝟒) 

 

1229 

205 

55 

12 

4 

3 

𝝅𝒏(𝟏𝟎
𝟓) 

 

9592 

1224 

259 

38 

10 

3 

𝝅𝒏(𝟏𝟎
𝟔) 

 

78498 

8169 

1393 

166 

34 

6 

𝝅𝒏(𝟏𝟎
𝟕) 

 

664579 

58980 

8543 

899 

160 

16 

𝝅𝒏(𝟏𝟎
𝟖) 

 

5761455 

440312 

55600 

4768 

697 

63 

𝝅𝒏(𝟏𝟎
𝟗) 

 

50847534 

3424506 

379508 

28388 

3633 

 

𝒏 
 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

𝝅𝒏(𝟏𝟎
𝟏𝟎) 

 

455052511 

27412679 

2713347 

180529 

20203 

? 

424 

? 

 

  

 

𝝅𝒏(𝟏𝟎
𝟏𝟏) 

 

4118054813 

224376048 

20093124 

1209318 

122857 

? 

1334 

? 

𝝅𝒏(𝟏𝟎
𝟏𝟐) 

 

37607912018 

1870585220 

152850135 

8398278 

776698 

? 

6185 

? 

 

𝝅𝒏(𝟏𝟎
𝟏𝟑) 

 

346065536839 

15834664872 

1189795268 

60070590 

5107243 

? 

33412 

4601 

𝝅𝒏(𝟏𝟎
𝟏𝟒) 

 

3204941750802 

135780321665 

9443899421 

441296836 

34706125 

? 

193160 

21405 

𝒏 
 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

𝝅𝒏(𝟏𝟎
𝟏𝟓) 

 

29844570422669 

1177209242304 

76218094021 

3314576487 

242544985 

  

 

𝝅𝒏(𝟏𝟎
𝟏𝟔) 

 

279238341033925 

10304195697298 

624026299748 

25379433651 

1736513596 
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4.4 CORRELATIONS OF THE LAST DIGITS IN THE PRIME NUMBER 
SEQUENCE 

In the spring of 2016, some exciting news appeared in the mathematical press: 

mathematicians had found striking patterns in prime numbers. The statistical frequency 

of the last digits of consecutive primes showed clearly relevant correlations. As a prime 

number can only end with one of the four digits 1,3,7,9 (apart from the small primes 2 

and 5), one would ordinarily expect that the final digits 1,3,7,9 would occur with equal 

regularity (because of the ‘randomness’ of the primes) and in fact, this is the case: an 

evaluation of the last digits of the first million prime numbers reveals that 1,3, 7 and 9 

occur with equal regularity (25% in each case). 

 

Figure 2. Incidence of the last digits in the prime sequence (without predecessor)  

Mathematica:  

data={{1,24.99},{3,25.01},{7,25.00},{9,24.99}} 

line=Fit[data,{1,x},x] 

Show[ListPlot[data,PlotStyle->Red,AxesLabel->Automatic,Filling-

>Axis,PlotMarkers->Automatic,PlotRange->{{0,10},{15,30}},PlotLabel-

>TextString["probability of last digit for the first 1m 

primes\npredecessor: none"],ImageSize->Large],Plot[line,{x,0,10}]] 

 

If, however, we examine the statistical properties of possible prime successors for a fixed 

given, e.g. 1, then we observe that the incidence of the following prime also having a 1 

as last digit lies markedly below 25 %. The incidence of the other possible successor 

digits also show noticeable deviations from the figure of 25  % one would normally 

expect. In the case of a 1 being the last digit, the incidence of the next prime number also 

having a 1 as last digit is only 18 %. One could say: prime numbers in the normal 

ascending sequence do not like to repeat their last digit. In fact, this tendency can be 

observed for all possible digits. For the first 10m prime numbers, we find the following 

statistical dependencies of the last digits: 
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Figure 3. Incidence of the last digits in the prime sequence (predecessor: ‘1’)  

Mathematica:  

data={{1,17.15},{3,31.00},{7,31.79},{9,20.07}} 

line=Fit[data,{1,x,x^2},x] 

Show[ListPlot[data,PlotStyle->Red,AxesLabel->Automatic,Filling-

>Axis,PlotMarkers->Automatic,PlotRange->{{0,10},{15,35}},PlotLabel-

>TextString["probability of last digit for the first 1m 

primes\npredecessor: 1"],ImageSize->Large],Plot[line,{x,0,10}]] 

 

Here are the results for all four possible last digits: 

 

Figure 4. Incidence of the last digits in the prime sequence (all possible predecessors)  
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Mathematica:  

(programs see Appendix). 

One may wonder what these statistical anomalies look like, if even more preceding primes 

are included in this exploration. The results, if not only predecessors are included but also 

pre-predecessors, can be found in the Appendix (Chapter 20.1). 

These correlations of the last digits of consecutive primes do not appear exclusively in 

the decimal system. They appear also in representations of systems having different 

number bases (e.g. the binary system).  

More refined examinations which have been carried out in the meantime have shown that 

the observed correlations are a direct consequence of the (yet unproven) Hardy-

Littlewood formula (see Formula (14) in Chapter 4.3). The observation that these 

correlations are becoming weaker if we examine prime sequences in very high regions is 

also a consequence of the Hardy-Littlewood conjecture. Probably the anomalies will 

steadily disappear if the tests are performed in arbitrarily high number regions. These 

regions must, however, be very high – probably astronomically high – because the 

anomalies tend to thin out only very gradually. 

The slow pace of this thinning-out-process is actually the only strange thing in this story. 

 

4.5 MERSENNE PRIME NUMBERS 

 

There are a vast number of publications dealing with Mersenne prime numbers. In this 

book, we will only mention some of the more important and interesting formulae and 

statements: 

Currently 51 Mersenne prime numbers are known (as of Dec. 2020). Many questions 

about Mersenne primes still remain open (see 3.2 Basics of prime numbers). 

Mersenne prime numbers have the form 𝑀𝑛 = 2
𝑝 − 1 with 𝑝 necessarily being a prime 

number. However, not every prime number 𝑝 in this term gives a Mersenne prime 𝑀𝑛. 

Mersenne primes are very rare, and searching for them is a little bit like searching for 

gems among the numbers. The largest known prime numbers are all Mersenne primes. 

That is because for this type of prime there exists a very fast primality test that makes it 

possible to test even gigantic numbers for primality. The largest currently known prime 

number is the Mersenne prime number 282589933 -1. It has 24862048  digits when 

expressed using the decimal number system (as of Dec. 2020). 

The fastest test for Mersenne primes is the Lucas-Lehmer Test8, which is refined by 

combination with other methods. A primality test for a number of this order of magnitude 

needs approx. one month of computing time, if performed on a fast PC with 4 CPU 

kernels (as of Oct. 2015). The Lucas-Lehmer test and the involved factorizing methods 

 
8 https://de.wikipedia.org/wiki/Lucas-Lehmer-Test 
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(P1 test and trial factoring) have been documented and described many times in detail 

and need not be explained here. 9 

The 51 currently known Mersenne prime exponents are (as of Dec. 2020): 

𝟐, 𝟑, 𝟓, 𝟕, 𝟏𝟑, 𝟏𝟕, 𝟏𝟗, 𝟑𝟏, 𝟔𝟏, 𝟖𝟗, 
𝟏𝟎𝟕, 𝟏𝟐𝟕, 𝟓𝟐𝟏, 𝟔𝟎𝟕, 𝟏𝟐𝟕𝟗, 𝟐𝟐𝟎𝟑, 𝟐𝟐𝟖𝟏, 𝟑𝟐𝟏𝟕, 𝟒𝟐𝟓𝟑, 𝟒𝟒𝟐𝟑, 
𝟗𝟔𝟖𝟗, 𝟗𝟗𝟒𝟏, 𝟏𝟏𝟐𝟏𝟑, 𝟏𝟗𝟗𝟑𝟕, 𝟐𝟏𝟕𝟎𝟏, 𝟐𝟑𝟐𝟎𝟗, 𝟒𝟒𝟒𝟗𝟕, 𝟖𝟔𝟐𝟒𝟑, 
𝟏𝟏𝟎𝟓𝟎𝟑, 𝟏𝟑𝟐𝟎𝟒𝟗, 𝟐𝟏𝟔𝟎𝟗𝟏, 𝟕𝟓𝟔𝟖𝟑𝟗, 𝟖𝟓𝟗𝟒𝟑𝟑, 𝟏𝟐𝟓𝟕𝟕𝟖𝟕, 𝟏𝟑𝟗𝟖𝟐𝟔𝟗, 
𝟐𝟗𝟕𝟔𝟐𝟐𝟏, 𝟑𝟎𝟐𝟏𝟑𝟕𝟕, 𝟔𝟗𝟕𝟐𝟓𝟗𝟑, 𝟏𝟑𝟒𝟔𝟔𝟗𝟏𝟕, 𝟐𝟎𝟗𝟗𝟔𝟎𝟏𝟏, 𝟐𝟒𝟎𝟑𝟔𝟓𝟖𝟑, 
𝟐𝟓𝟗𝟔𝟒𝟗𝟓𝟏, 𝟑𝟎𝟒𝟎𝟐𝟒𝟓𝟕, 𝟑𝟐𝟓𝟖𝟐𝟔𝟓𝟕, 𝟑𝟕𝟏𝟓𝟔𝟔𝟔𝟕, 𝟒𝟐𝟔𝟒𝟑𝟖𝟎𝟏, 𝟒𝟑𝟏𝟏𝟐𝟔𝟎𝟗 
𝟓𝟕𝟖𝟖𝟓𝟏𝟔𝟏, 𝟕𝟒𝟐𝟎𝟕𝟐𝟖𝟏, 𝟕𝟕𝟐𝟑𝟐𝟗𝟏𝟕, 𝟖𝟐𝟓𝟖𝟗𝟗𝟑𝟑 
 
Mathematica program for creating Mersenne prime numbers: 

Flatten[Position[EulerPhi[2^#-]+2==EulerPhi[2^#]&/@Range[1,100],True]-

1]  

The range of the first 48 Mersenne prime numbers has been exhaustively tested. The 

indices of the Four last numbers (49 to 51) are still uncertain, i.e. it may be possible that 

in this region more Mersenne primes could be discovered.  

 (sequence A000043 in OEIS) (as of Dec. 2020) 

Unresolved questions about Mersenne prime numbers 

Are there infinitely many Mersenne prime numbers? Everything indicates that the answer 

is ‘yes’. 

Is the ‘new Mersenne conjecture’ true ‘? 

This states that, if any two of the following conditions hold, then the third condition is 

also true: 

1) 𝑛 = 2𝑘 ± 1 or 𝑛 = 4𝑘 ± 3 

2) 2𝑛 − 1 is a prime (obviously a Mersenne prime) 

3) 
(2𝑛+1) 

3
is a prime 

Are there infinitely many composite Mersenne numbers? Probably: yes. 

The number 𝑁𝑀𝑝 of Mersenne prime numbers that are less than or equal to 𝑁  is 

asymptotically:  

𝑵𝑴𝒑(𝑵) ~
𝒆𝜸

𝐥𝐧 (𝟐)
𝐥𝐧 𝐥𝐧 (𝑵) (17) 

Graph:10 

 
9 http://www.mersenne.org/various/math.php 
10 http://primes.utm.edu/notes/faq/NextMersenne.html 

https://oeis.org/A000043
http://www.mersenne.org/various/math.php
http://primes.utm.edu/notes/faq/NextMersenne.html


Mersenne prime numbers  

36 
 

 

Figure 5. nth Mersenne prime number (double logarithmic plot)  

Clearly the asymptotic estimate fits very well. 

 

Figure 6. nth Mersenne prime number (double logarithmic plot), created by KVEC 

Illustration: estimate (red), ln (ln (𝑀𝑝)) (black) 

Created by KVEC and the following parameter file: 

vnull 

MersennePrimesAsymptotic_KVEC.png 

http://www.kvec.de/
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-antialias 2 -dimension 1024 -xdim 1025 -ydim 576 

-format png -xmin 0.000000 -xmax 45.000000 

-drcolor 0 0 0 -bkcolor 255 255 128 -nstep 2000 -lwidth 200  

-scmode 2 -mode aniso -reduce all -smooth on  

 function 

imin 0; imax 51; drcolor 0 0 0; 

f1(x)=log(KV_MPRIMES[x])/M_LN2; 

drcolor 255 0 0; 

f2(x)=exp(-M_G)*x+0.8255; 

endfunc 

 

The few things we know or assume about the analytic mathematics of the Mersenne prime 

are documented in detail here: http://primes.utm.edu/notes/faq/ 

The following graphic is a plot of a phase-space representation of logarithmic values of 

the Mersenne prime numbers:11 

 

Figure 7. nth Mersenne prime number (double logarithmic phase-space representation) 

Created by KVEC using the following parameter file: 

null 

 
11 Created by KVEC (http://www.kvec.de) 
 

http://primes.utm.edu/notes/faq/NextMersenne.html
http://www.kvec.de/
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Mersenne_Exponents_In_PhaseSpace.png 

-antialias 2 -dimension 1024 -format png -mode aniso -random 24 703 

 

Are there symmetric structures inside? What will this image look like if we take 100 or 

1000 Mersenne primes instead of only 51 Mersenne primes? 

 
KVEC-program for creating the first 50 Mersenne prime numbers: 

vnull  

(null).swf 

-debug plot –function imax 51; f1(i)=KV_MPRIMES[i]; endfunc 

 

 

Yet another an image created by ‘playing around’ with Mersenne primes: 

Lisssajous figure, created with all Mersenne prime number exponents. 

The KVEC program used reads: 
 

 

vnull 

plot_circles_MersennePrimes_Iteration.jpg 

-antialias 2 -xdim 847 -ydim 1025 -format jpeg 

-drcolor 50 0 24 -bkcolor 128 196 255 -nstep 500000 -grit 8 -scmode 2 

-paper user 600.000000 200.000000 -pattern outin 128 128 128 function 

C1=0.9; x1=0.5; y1=0.25; 

object markfilledcircle; 

msize 0.1; imax 500000; 

x1()=(1.0-x1*y1*C1)*cos(log(KV_MPRIMES[II%48])+II); 

y1()=(x1-y1)*sin(log(KV_MPRIMES[II%48])-II); 

endfunc 
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Figure 8. Lissajous-like graphic, created with Mersenne prime number exponents  

4.5.1 GIMPS – THE GREAT INTERNET MERSENNE PRIME SEARCH 

The GIMPS is an Internet project to which volunteers contribute the computing power of 

their own PCs. The distributed computer power from thousands of users is enlisted to 

search for Mersenne prime numbers. 

It would be woefully remiss, of course, not to mention this successful research project in 

a book about prime numbers!  
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Anyone who wants to participate in this project can download the appropriate software 

for their operating system from the GIMPS web site12. 

The project has been very successful during the last few years. Since the foundation of 

the project (1996), GIMPS has discovered the 16 largest Mersenne primes. 

The total computing power of the project reaches between 300 and 950 TFLOP/sec (as 

of Oct. 2016). Just a reminder: a FLOP is a ‘Floating Point Operation’ (an operation with 

floating point numbers). A TFLOP/sec (=TeraFLOP/sec) means that 1012 floating point 

numbers are evaluated every second. 

At peak times GIMPS achieves speeds of almost one PFLOP/sec (PetaFlop/sec = 

1015 FLOP/ sec = 1.000.000.000.000.000 FLOP/sec ). 

Here are the GIMPS statistics of the author, who, naturally, is participating in this project 

(as of Nov. 2016): 

 

Figure 9. GIMPS statistics of the author  

 

4.6 FERMAT PRIME NUMBERS 

There is also an immense amount of literature devoted to Fermat prime numbers. Here, 

in brief, are the most important issues concerning Fermat primes 𝐹𝑛: 

Fermat primes are primes of the form 

𝑭𝒏 = 𝟐
𝟐𝒏 + 𝟏 (18) 

  

 
12 http://www.mersenne.org 
 

http://www.mersenne.org/
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It has been known for hundreds of years that numbers of the form 2𝑚 + 1 can only be 

primes if 𝑚 has the form 2𝑛. Unfortunately, however, not every Fermat number 22
𝑛
+

113 is necessarily a prime (as Fermat believed). In fact, to this day, only five Fermat 

primes are known, namely 𝐹0to 𝐹4 : 

𝟑, 𝟓, 𝟏𝟕, 𝟐𝟓𝟕, 𝟔𝟓𝟓𝟑𝟕 

All other Fermat numbers are probably composite. 

𝐹5 to 𝐹32 are composite numbers. 𝐹33 is the first Fermat number of which we do not know 

whether it is composite or prime (as of Nov. 2016). 

Already in 1732, Euler had shown that each factor of a Fermat number 𝐹𝑛, (𝑛 ≥ 2) must 

have the form 𝑘 ⋅ 2𝑛+2+1. 

Since the year 1877, Pépin’s prime number test for Fermat numbers has been known.  

The following conditions are equal (note: 𝑘 is usually taken as 3): 

- 𝐹𝑛 is a prime number and (
𝑘

𝐹𝑛
) = −1, (

𝑘

𝐹𝑛
) is the Jacobi symbol14 

- 𝑘(𝐹𝑛−1)/2 ≡ −1 (mod 𝐹𝑛) 

Some basic properties of Fermat prime numbers:15 

𝑭𝒏 = (𝑭𝒏−𝟏 − 𝟏)
𝟐 + 𝟏, 𝐟𝐨𝐫 𝒏 ≥ 𝟏 

and (for 𝑛 ≥ 2): 

𝑭𝒏 = 𝑭𝒏−𝟏 + 𝟐
𝟐𝒏−𝟏𝑭𝟎 ⋅⋅⋅ 𝑭𝒏−𝟐 

𝑭𝒏 = 𝑭𝒏−𝟏
𝟐 − 𝟐(𝑭𝒏−𝟐 − 𝟏)

𝟐 

𝑭𝒏 = 𝑭𝟎 ⋅⋅⋅ 𝑭𝒏−𝟏 + 𝟐 

 

In the decimal system, the last digit of every Fermat number (with the exception of the 

first two) is 7. 

Fermat primes are not ‘Brazilian‘ numbers, which are numbers of the form: 

𝑷𝒌 = 𝟏 + 𝒏 + 𝒏
𝟐 + 𝒏𝟑 +⋯+ 𝒏𝒌, 𝒏 > 𝟏, 𝒌 > 𝟏 

 
(19) 

Note: it is not known whether there are infinitely many Brazilian prime numbers…) 

Mathematica program for generating Fermat prime numbers: 

Select[Table[2^(2^n) + 1, {n, 0, 4}], PrimeQ] 

 

 
13 Sequence https://oeis.org/A000215 
14 http://mathworld.wolfram.com/JacobiSymbol.html 
15 https://en.wikipedia.org/wiki/Fermat_number 

https://oeis.org/A000215
http://mathworld.wolfram.com/JacobiSymbol.html
https://en.wikipedia.org/wiki/Fermat_number
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The number of digits 𝐷(𝑛) of a Fermat number 𝑭𝒏 (in the decimal system) comes to: 

𝑫(𝒏) = 𝟏 + ⌊𝟐𝒏 𝐥𝐧 𝟐⌋ 

 

Remarkable is also the relation (discovered by Gauss back in the 18th century) between 

the ability to construct a regular polygon with n points using a compass and straight edge 

and the Fermat prime numbers: 

A regular polygon having 𝒏 corners can be constructed with a compass and straight 

edge if n is the product of a power of 𝟐 and Fermat prime numbers (in distinct 

pairs). 

  

It is curious that it should be possible to construct a regular pentagon or a polygon with 

17 corners by this method but not one with 7 or 11 corners… 

 

4.7 LUCKY PRIMES 

Lucky numbers must not be confused with ‘happy’ numbers (which are defined quite 

differently16). 

First of all, 'lucky' numbers are defined as follows17. ‘Lucky’ numbers are constructed 

according to a procedure that resembles the ‘Sieve of Eratosthenes’: beginning with the 

list of natural numbers 1,2,3,4,5,6, … we remove elements from the list in accordance 

with the following principle: 

 

- The 1 is ‘lucky’ by definition: 
(01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17,18,19,20,…) 

- The next number is the 2, so we remove every second number; the 3 survives:  
(01,03,05,07,09,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,…) 

- The next number is the 3, so we remove every third number; the 7 survives:  
(01,03,07,09,13,15,19,21,25,27,31,33,37,39,43,45,49,51,55,57,…) 

- The next number is the 7, so we remove every 7th number; the 9 survives: 
(01,03,07,09,13,15,21,25,27,31,33,37,43,45,49,51,55,57,…) 

- The next number is the 9, so we remove every 9th number; the 13 survives: 
(01,03,07,09,13,15,21,25,31,33,37,43,45,49,51,55,…) 

… etc. 

 

What remains is the sequence of ‘lucky numbers’. 

The sequence of lucky numbers has much in common with the sequence of prime 

numbers: they both have the same density, which is proportional to 
1

ln (𝑛)
. Twin primes 

and twin ‘luckies’ seem also to exhibit the same density, as the following table suggests: 
  

 
16 http://mathworld.wolfram.com/HappyNumber.html 
17 https://oeis.org/A000959 

http://mathworld.wolfram.com/HappyNumber.html
https://oeis.org/A000959
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Table 7. Lucky numbers up to 1E15 

Region 
Number of 

lucky numbers 

Number of 

primes 

Number of  

twin 

luckies 

Number of  

twin 

primes 

100 1 0 1 0 

101 4 4 2 2 

102 23 25 7 8 

103 153 168 33 35 

104 1118 1229 178 205 

105 8772 9592 1162 1224 

106 71918 78498 7669 8169 

107 609237 664579 55548 58980 

108 5286238 5761455 419174 440312 

109 46697909 50847534 3274570 3424506 

1010 418348044 455052511 26298112 27412679 

1011 3790060378 4118054813 ? 224376048 

1012 34652117969 37607912018 ? 1870585220 

1013 319239995375 346065536839 ? 15834664872 

1014 2960006060823 3204941750802 ? 135780321665 

1015 27596305747873 29844570422669 ? 1177209242304 

 
 

 

Mathematica: 

luckies=2*Range@500-1; 

f[n_]:=Block[{k=luckies[[n]]},luckies=Delete[luckies,Table[{k},{k,k,Le

ngth@luckies,k}]]];Do[f@n,{n,2,30}];luckies 

(*or:*) 

sieveMax = 10^6; luckies = Range[1, sieveMax, 2];  

sieve[n_] := Module[{k = luckies[[n]]}, luckies = Delete[luckies, 

Table[{i}, {i, k, Length[luckies], k}]]]; n = 1; While[luckies[[n]] < 

Length[luckies], n++; sieve[n]]; luckies 

 

Result: 
{1,3,7,9,13,15,21,25,31,33,37,43,49,51,63,67,69,73,75,79,87,

93,99,105,111,115,127,129,133,135,141,151,159,163,169,171,18

9,193,195,201,205,211,219,223,231,235,237,241,259,261,267,27

3,283,285,289,297,303,307,319,321,327,331,339,349,357,361,36

7,385,391,393,399,409,415,421,427,429,433,451,463,475,477,48

3,487,489,495,511,517,519,529,535,537,541,553,559,577,579,58

3,591,601,613,615,619,621,631,639,643,645,651,655,673,679,68

5,693,699,717,723,727,729,735,739,741,745,769,777,781,787,80

1,805,819,823,831,841,855,867,873,883,885,895,897,903,907,92

5,927,931,933,937,957,961,975,979,981,987,991,993,997} 
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Please note: this type of ‘lucky’ number must also not be confused with Euler’s ‘lucky’ 

numbers (prime numbers 𝑛 of the form 𝑚2 −𝑚 + 𝑛 such that 𝑚2 −𝑚 + 𝑛 gives a 

prime number, for 𝑚 = 0,1,… , 𝑛 − 1). 

 

The set of ‘lucky’ primes is simply the set of ‘lucky’ numbers that are prime.18 It is not 

known if there are infinitely many ‘lucky’ prime numbers (as of Oct. 2015). 

 

4.8 PERFECT NUMBERS 

4.8.1 GENERAL ISSUES AND DEFINITION 

Perfect numbers are closely related to Mersenne prime numbers (see Chapter 4.5). 

Definition 

A (positive whole) number is perfect if it is identical to the sum of its divisors (where the 

number itself is excluded as a divisor). This sum of divisors is often called the aliquot 

sum 𝑆(𝑛), in contrast to the complete sum of divisors 𝜎1(𝑛), for which the number itself 

is also included in the sum. From this, it follows that: 

a number is perfect if 𝑺(𝒏) = 𝒏 or 𝝈𝟏(𝒏) = 𝟐𝒏 (20) 

 

Perfect numbers have been well known since antiquity (Nicomachus19, Philo Judaeus20) 

(the four numbers 𝟔, 𝟐𝟖, 𝟒𝟗𝟔, 𝟖𝟏𝟐𝟖) and were already mentioned in the ‘Elements’ of 

the ancient Greek mathematician Euclid. Probably the name comes from the idea that 

God created the world in 6 days, as well as the fact that the moon’s orbit has a duration 

of 28 days. 

There are as many known perfect numbers as known Mersenne prime numbers (as of 

Dec. 2020). The first 10 are21: 

  

 
18 https://oeis.org/A031157 
19 Nicomachus (60 – 120 n. Chr.), antique philosopher, musical theorist and mathematician 
20 Philo Judaeus: (25-50 n. Chr.), Greek-Jewish philosopher, lived in Alexandria 
21 https://en.wikipedia.org/wiki/Perfect_number 

https://oeis.org/A031157
https://en.wikipedia.org/wiki/Perfect_number
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Table 8. The first 10 perfect numbers  

n   Perfect numbers  

1  6  

2  28  

3  496  

4  8128  

5  33550336  

6  8589869056  

7  137438691328  

8  2305843008139952128  

9  2658455991569831744654692615953842176  

10  191561942608236107294793378084303638130997321548169216  

 

All known perfect numbers are related to the Mersenne prime numbers (the proof 

originated from Euler, 18th century). 

If 𝟐𝒑 − 𝟏 𝐢𝐬 𝐩𝐫𝐢𝐦𝐞, 𝐭𝐡𝐞𝐧 𝟐𝒑−𝟏(𝟐𝒑 − 𝟏) 𝐢𝐬 𝐚 𝐩𝐞𝐫𝐟𝐞𝐜𝐭 𝐧𝐮𝐦𝐛𝐞𝐫. (21) 

 

All currently known perfect numbers are even. There are 51 perfect numbers known (as 

of Dec. 2020). It is unknown if any odd perfect numbers exist. Probably there are 

infinitely many perfect numbers (as there are also probably infinitely many Mersenne  

primes). 

Perfect numbers also occur in numerology and mysticism. 

4.8.2 PROPERTIES 

Each even perfect number can be represented as follows: 

𝑛 = 1 +
9

2
𝑘(𝑘 + 1), (where 𝑘 = 8𝑗 + 2, 𝑗 > 0 and 𝑛 > 6) (22) 

 

The converse does not apply! One does not obtain a perfect number for each 𝑗… 

For j= 1, 2, … we obtain: 28, 496, 1540, 3160, 5356, 8128, 11476, 15400, 19900, … 

Only the following 𝑗 will produce perfect numbers: 

Mathematica-program for computing the indices that provide perfect 

numbers: 

MPrimeExp={2,3,5,7,13,17,19,31,61,89,107,127,521,607,1279,2203,2281,32

17,4253,4423,9689,9941,11213,19937,21701,23209,44497,86243,110503,1320

49,216091,756839,859433,1257787,1398269,2976221,3021377,6972593,134669

17,20996011,24036583,25964951,30402457,32582657} 
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PerfectN=Table[2^(MPrimeExp[[k]]-1)(2^MPrimeExp[[k]]-1),{k,1,20}] 

Table[Solve[1+9/2(8j+2)(8j+3)==PerfectN[[i]],j],{i,2,10}] 

yields:  

{{j->-(5/8)},{j->0}},{{j->-(13/8)},{j->1}}, 

{{j->-(45/8)},{j->5}}, 

{{j->-(2733/8)},{j->341}}, 

{{j->-(43693/8)},{j->5461}}, 

{{j->-(174765/8)},{j->21845}}, 

{{j->-(715827885/8)},{j->89478485}}, 

{{j->-(768614336404564653/8)},{j->96076792050570581}}, 

{{j->-(206323339880896712483187373/8)},{j->25790417485112089060398421}} 

 

The sequence {0, 1, 5, 341, 5461,… } is the sequence for all 𝑛, so 24𝑛 + 7 produces a 

Mersenne prime number. 

 

More properties 

- the sum of the reciprocals of all divisors of a perfect number 𝑛 is 2: 

∑
1

𝑘
= 2

𝑘|𝑛

 

- each perfect number 𝑛>6 can be represented as a sum of third powers: 

 

𝑛 = ∑(2𝑖 − 1)3, where 𝑛 = 2𝑝−1(2𝑝 − 1)

2
𝑝−1
2

𝑖=1

 

 

- each perfect number can also be represented (by taking a suitable 𝑘) as: 

 

𝑛 =∑𝑖

𝑘

𝑖=1

=
𝑘(𝑘 + 1)

2
 

 

examples: 6 = 1 + 2 + 3 =
3⋅4

2
, 28 = 1 + 2 + 3 + 4 + 5 + 6 + 7 =

7⋅8

2
 

 

 

 

There are two types of generalization of the term ‘perfect number’: 

 

1) if the sum of the ‘true’ divisors (aliquot sum) is n times the number itself, then 

this number is called ‘n-perfect’. Example: 120 is a ‘2-perfect’ number. 

2) if p and 𝑝𝑘-m-1 are prime numbers, the equation 

 

𝜎1(𝑥) =
𝑝𝑥 +𝑚

𝑝 − 1
 

has the solution 𝑥 = 𝑝𝑘−1(𝑝𝑘 −𝑚 − 1). 
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Odd perfect numbers 

 

No odd perfect numbers are known. It is also not known whether any exist. 

Great progress has already been made in the search for such numbers 𝑛. Here is the 

current status of the research results (Oct. 2015). If such numbers 𝑛 exist, they must 

satisfy the following conditions: 

 

- 𝑛 > 101500 
- 105 is not a divisor of 𝑛 
- 𝑛 has the form 𝑛 ≡ 1(mod 12)or 𝑛 ≡ 117(mod 468) or 𝑛 ≡ 81(𝑚𝑜𝑑 324) 
- the largest prime factor of 𝑛 is larger than 108 
- 𝑛 is composed of at least 101 prime factors 

 
Thus it is very unlikely that odd perfect numbers exist. 

 

4.9 SOPHIE GERMAIN PRIME NUMBERS 

A prime number 𝑝 is called Sophie Germain prime if 2𝑝 + 1 is a prime number too. The 

numbers 2𝑝 + 1 are called ‘safe primes’. They are also solutions to the equation (in 

which 𝜑(𝑛) is the Euler phi function, also called totient function): 

𝝋(𝒏) = 𝟐𝒑 (23) 

 

The following theorem applies: if 𝑝 is a Sophie Germain prime, then there are no integer 

numbers 𝑥, 𝑦 and 𝑧 from ℤ (without 0) such that 𝑝 is not a divisor of x⋅ 𝑦 ⋅ 𝑧 and the 

equation 𝑥𝑝 + 𝑦𝑝 = 𝑧𝑝 holds.  

Note: regarding the solutions of the Fermat equation 𝒙𝒏 + 𝒚𝒏 = 𝒛𝒏  two cases are 

distinguished: in the first case 𝑛 is not a divisor of 𝑥, 𝑦 or 𝑧, i.e. for prime numbers of the 

type ‘Sophie Germain’ the first case of Fermat’s theorem is true.22 

The first Sophie Germain primes are: 

2, 3, 5, 11, 23, 29, 41, 53, 83, 89, 113, 131, 173, 179, 

191, 233, 239, 251, 281, 293, 359, 419, 431, 443, 491, 509, 

593, 641, 653, 659, 683, 719, 743, 761, 809, 911, 953, 

1013, 1019, 1031, 1049, 1103, 1223, 1229, 1289, 1409, 1439, 

1451, 1481, 1499, 1511, 1559 

 

 

 
22 Fermat’s last theorem: there are no integer solutions of 𝑥𝑛 + 𝑦𝑛 = 𝑧𝑛 if 𝑛 > 2. 
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4.9.1 COMPUTATION AND PROPERTIES 

Properties of Sophie Germain primes 

1) If 𝑝 > 3 is a Sophie Germain prime and 𝑝 ≡ 3 (mod 4), then 2𝑝 + 1 is a divisor 

of the 𝑝th Mersenne number. 

2) For all Sophie Germain primes, the following obtains: 𝑝 ≡ 3 (mod 4). 
3) If represented in the decimal system, Sophie Germain primes can never have a 

last digit of 7. 

4) 𝑝 and 2𝑝 + 1 are Sophie Germain primes, if and only if p is a prime and 22𝑝 ≡
1(mod 2𝑝 + 1). 

The following asymptotic estimate of the number of SG primes up to a limit 𝑁 obtains: 

NumberOf𝑆𝐺 = 2𝐶2∫
1

ln(𝑥) ln (2𝑥 + 1)
𝑑𝑥 ≈

2𝐶2𝑁

ln2(𝑁)

𝑁

2

 (24) 

 

(with 𝐶2 = 0,6601618158 being the twin prime constant). 

 

Computation by Mathematica: (e.g. in the interval 1 to 1000): 

Select[Prime[Range[1000]], PrimeQ[2#+1]&] 

Conjectures 

1) There are infinitely many Sophie Germain primes. 

2) Between 𝑛 and 2𝑛 there is always at least one Sophie Germain prime. 

Record 

Currently the largest SG prime has the value: 

𝟏𝟖𝟓𝟒𝟑𝟔𝟑𝟕𝟗𝟎𝟎𝟓𝟏𝟓 ·  𝟐𝟔𝟔𝟔𝟔𝟔𝟕 –  𝟏 

– a number having 200.701 decimal digits (as of Nov. 2016). 

Notes: in mathematical literature sequences of SG primes are called Cunningham chains 

of the first kind.23 

Number 𝑎(𝑛) of SG primes up to 10𝑛: 

 

 

 
23 https://de.wikipedia.org/wiki/Cunningham-Kette 

https://de.wikipedia.org/wiki/Cunningham-Kette
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Table 9. Number of Sophie Germain primes up to 1E12 

n   a(n)  

1  3  

2  10  

3  37  

4  190  

5  1171  

6  7746  

7  56032  

8  423140  

9  3308859  

10  26569515  

11  218116524  

12  1822848478  

 

Computation by Mathematica (example): 

Accumulate[Table[Boole[PrimeQ[n]&&PrimeQ[2n+1]], {n, 1, 200}]] 

4.10 FIBONACCI NUMBERS AND OTHER RECURSIVE SEQUENCES 

There is an immense amount of literature concerning the Fibonacci numbers. An 

overview is not given here. You can find interesting information on Michael Becker's 

homepage.24 

Only the following formulae are mentioned here (curiosities): 

1

𝐹11
=

1

89
= 0.01123595 (the decimal expansion starts exactly with the Fibonacci 

numbers) 

(to be more precise, we should actually write):  

1

𝐹11
=∑

𝐹𝑘
10𝑘+1

∞

𝑘=0

 

 

(25) 

The quotient 
𝐹𝑛+1

𝐹𝑛
 of two consecutive Fibonacci numbers is the 𝑛th approximation of the 

continued fraction: 

1 +
1

1 +
1

1 +
1

1 +⋯

 
(26) 

 

 
24 http://www.ijon.de/mathe/fibonacci/node2.html#0002320 

http://www.ijon.de/mathe/fibonacci/node2.html%230002320
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The limit is the number of the Golden Ratio: Φ = 1.618 =
1+√5

2
. 

𝐹12 = 144 = 12
2 

𝐹12 is the only square among the infinitely many Fibonacci numbers. The question arises 

as to whether there is some more profound reason for this, because it cannot be the product 

of chance… The reason for this actually exists. It appears as a ‘side-product’ in A. Wiles 

proof of Fermat’s last theorem. But that is another story ☺… 

The following formula is also a curiosity: 

⌈𝑒
𝑛−1
2 ⌉ , 𝑛 = 0,1,2… 

It yields exactly the first 10 Fibonacci numbers, following each other for 𝑛 = 1, … ,10. 

Mathematica: Table[Floor[Exp[(n-1)/2]]+1,{n,1,25}] 

{1,1,2,3,5,8,13,21,34,55,91,149,245,404,666,1097,1809,2981,4915,8104,… 

} 

 

For practical purposes: the 𝑛th Fibonacci number can be calculated very easily: 

𝐹𝑛 = Round (
Φ𝑛

√5
) (27) 

 

Finally, J. P. Jones showed in the year 1975 that there exists a polynomial of degree 5 

with two variables, whose positive integer values are exactly the set of the Fibonacci 

numbers (using non-negative arguments). This remarkable fact seems to be more of 

theoretical interest, at first glance. After all, the statement can be verified by using the 

following Mathematica program: 

numbersOfInstances=6; 

polynom[x_,y_]:=2x*y^4+x^2*y^3-2x^3*y^2-y^5-x^4*y+2*y; 

list=FindInstance[Reduce[polynom[x,y]>0&&x>=0&&y>=0,{x,y},Integers],{x

,y},Integers,numbersOfInstances,RandomSeed->112] 

Table[polynom[list[[n]][[1]][[2]],list[[n]][[2]][[2]]],{n,1,Length[lis

t]}] 

 

This strange property is not something the author has seen anywhere described, though 

perhaps it has already been noticed. 

If we have the following polynomial: 

poly𝐹𝑖𝑏(𝑥, 𝑦) = 2𝑥𝑦
4 + 𝑥2𝑦3 − 2𝑥3𝑦2 − 𝑦5 − 𝑥4𝑦 + 2𝑦 where 𝑥, 𝑦 ∈ ℕ0 

 

Then 

𝐩𝐨𝐥𝐲𝑭𝒊𝒃(𝑭𝒊, 𝑭𝒊+𝟏) = 𝑭𝒊+𝟏 (𝒊 ≥ 𝟎) (28) 
 

i.e. the arguments for which the polynomial yields the (positive) Fibonacci numbers are 

precisely the Fibonacci numbers themselves! From this, we get the following equation: 
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𝑭𝒊+𝟏 = 2𝑭𝒊𝑭𝒊+𝟏 
4 + 𝑭𝒊

2𝑭𝒊+𝟏 
3 − 2𝑭𝒊

3𝑭𝒊+𝟏 
2 − 𝑭𝒊+𝟏 

5 − 𝑭𝒊
4𝑭𝒊+𝟏 

+ 2𝑭𝒊+𝟏  
(29) 

 

Or, in other words, the ‘successor’ 𝑭𝒊+𝟏 in the Fibonacci sequence can be calculated from 

the predecessor 𝑭𝒊 by calculating the positive, integer valued solution of this equation of 

degree 4, and that all happens without knowing the index 𝑖: 
 

−𝒚4 + 2𝑭𝒊𝒚
3 + 𝑭𝒊

2𝒚2 − 2𝑭𝒊
3𝒚 + 𝟏 − 𝑭𝒊

4 = 𝟎 (30) 
 

Mathematica example: 𝑓 = 𝐹𝑖 = 8; 

Solve[-y^4+2f y^3+f^2y^2-2f^3y+1-f^4==0,y,Integers] 

{{y->-5},{y->13}} 

 

The following conjecture is probably easily proved (if it is true…): 

(30) always has real solutions for positive 𝑭𝒊. Integer solutions exist only if 𝑭𝒊 is a 

Fibonacci number. 

 

Note: this explicit formula can, of course, be used to calculate values of 𝑛 from 𝐹𝑛 (e.g. 

using Mathematica) and, by taking 𝑛 + 1 for the explicit formula, the successor 𝐹𝑛+1 of 

𝐹𝑛  can be determined (without knowing 𝑛 ). This procedure is, however, very 

inconvenient and not as elegant as using the equation of 4th degree (30). 

For practical use: the following formula is the fastest one (for 𝑛 > 1): 

 

𝐹𝑛+1 = Round(𝐹𝑛Φ), Φ = 1.618 =
1+√5

2
 and Round(𝑥) = ⌊𝑥 + 0.5⌋ (31) 

 

For the inverse process, it is also very easy to determine 𝑛: 

 

𝑛 = Round(
ln𝐹𝑛 +

ln5
2

lnΦ
) (32) 

 

A simple test to find out whether 𝑛 is a Fibonacci number or not: 

𝒏 is a Fibonacci number, if 𝟓𝒏𝟐 + 𝟒 or 𝟓𝒏𝟐 − 𝟒 is a square (more precisely: only 

if…). 

 

Finally it should be mentioned that the last digit of the numbers in the Fibonacci sequence 

repeats itself with a period of 60 (for the last n digits there also exist periods, whose 

lengths grow by a factor of 5 for each additional digit). 

The Fibonacci sequence was first mentioned in 450 B.C. in the Chandah-shāstra, a 

document written in Sanskrit. It was only, however, through the publication in 1202 of 
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the Liber Abaci (The Book of Calculation) by Leonardo Fibonacci,25 in which he used it 

to describe the proliferation of rabbits, that it became widely known in the West. 

 

Figure 10. Page from Liber Abaci by Leonardo Fibonacci 

It is well known in esoteric circles and among conspiracy theorists, as well as appearing 

in numerous science fiction and fantasy films (e.g. ‘Sacrilege’26, 2004) 

The Fibonacci numbers belong to the class of recursively defined sequences (more 

precisely: linearly recursive), so a brief digression is perhaps in order. 

 

4.10.1 LINEAR RECURSION: A MIGHTY INSTRUMENT 

The method of linear recursion, as a principle of construction for arithmetic sequences, 

yields many interesting consequences that have been the subject of extensive 

 
25 https://de.wikipedia.org/wiki/Leonardo_Fibonacci 
26 https://de.wikipedia.org/wiki/Sakrileg_(Roman) 

https://de.wikipedia.org/wiki/Leonardo_Fibonacci
https://de.wikipedia.org/wiki/Sakrileg_(Roman)
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mathematical investigations. Here are a few examples: the Fibonacci and its related 

Lucas, Perrin (aka the ‘Skiponacci’ sequence, see Chapter 20.3) and Pell sequences. 

There is a vast amount of mathematical literature dealing with these sequences. Here, the 

author would just like to present a few results that appear particularly interesting. 

Sequences defined by linear recursion are defined by the linear relation of their sequence 

members to their preceding sequence members: 

𝑎𝑛 = 𝑐1𝑎𝑛−1 + 𝑐2𝑎𝑛−2 +⋯
+ 𝑐𝑘𝑎𝑛−𝑘, with the initial values 𝑎0, 𝑎1, … , 𝑎𝑘−1 

(33) 

 

Table 10. A few linear recursive defined sequences  

 

Mathematica offers the user the functions: 

LinearRecurrence[kernel,init,n], RecurrenceTable[] and 

FindLinearRecurrence[list], which are useful for investigations with 

recursive sequences.  

Using RSolve and RSolveValue recursive equations can be solved, e.g..: 

RSolve[{f[n]==f[n-1]+f[n-2],f[0]==0,f[1]==1},f[n],n] 

{{f[n]->Fibonacci[n]}} or: 

 

func=RSolveValue[{f[n]==f[n-1]+f[n-2],f[0]==0,f[1]==1},f,n] 

Recursion Initial values Kernel Expl. formula Name 
𝑎𝑛 = 𝑎𝑛−1 + 𝑎𝑛−2 𝑎0 = 0,  𝑎1 = 1 {1,1} 1

√5
[(
1 + √5

2
)

𝑛

− (
1 − √5

2
)

𝑛

] Fibonacci 

𝑎𝑛 = 𝑎𝑛−1 + 𝑎𝑛−2 𝑎0 = 2,  𝑎1 = 1 {1,1} 
(
1 + √5

2
)

𝑛

+ (
1 − √5

2
)

𝑛

 Lucas 

𝑎𝑛 = 2𝑎𝑛−1 + 𝑎𝑛−2 𝑎0 = 0,  𝑎1 = 1 {2,1} (1 + √2)𝑛 − (1 − √2)𝑛

2√2
 Pell 

𝑎𝑛 = 2𝑎𝑛−1 + 𝑎𝑛−2 𝑎0 = 2,  𝑎1 = 2 {2,1} (1 + √2)𝑛 + (1 − √2)𝑛 Pell-Lucas 
𝑎𝑛 = 𝑎𝑛−2 + 𝑎𝑛−3 𝑎0 = 1, 𝑎1 = 1, 𝑎2 = 1 {0,1,1} (complicated, see 

20.6) 
Padovan 

𝑎𝑛 = 𝑎𝑛−2 + 𝑎𝑛−3 𝑎0 = 3, 𝑎1 = 0, 𝑎2 = 2 {0,1,1} (see Chapter 20.6) Perrin 
𝑎𝑛
= 𝑎𝑛−1 + 𝑎𝑛−2 + 𝑎𝑛−3 

𝑎0 = 0, 𝑎1 = 1, 𝑎2 = 2 {1,1,1} (complicated) ‘Tribonacci‘ 

𝑎𝑛
= 𝑎𝑛−1 + 𝑎𝑛−2 + 𝑎𝑛−3
+ 𝑎𝑛−4 

𝑎0 = 0, 𝑎1 = 1, 𝑎2
= 2, 𝑎3 = 4 

{1,1,1,

1} 
( complicated) ‘Quadranac

ci’ 

𝑎𝑛 = 𝑎𝑛−5 + 𝑎𝑛−2 𝑎0 = 5, 𝑎1 = 0, 𝑎2
= 2, 𝑎3 = 0, 𝑎4 = 2 

{0,1,0,

0,1} 
? ‘5’+Sloane 

A133394 
𝑎𝑛 = 𝑎𝑛−5 + 𝑎𝑛−2 𝑎0 = 0, 𝑎1 = 2, 𝑎2

= 0, 𝑎3 = 2, 𝑎4 = 5 

{0,1,0,

0,1} 
? Reed 

Jameson 
𝑎𝑛 = 𝑎𝑛−5 − 𝑎𝑛−3 𝑎0 = 5, 𝑎1 = 0, 𝑎2

= 0, 𝑎3 = −3, 𝑎4 = 0 
{0,0,-

1,0,1} 
? Sloane 

A136598 
𝑎𝑛 = 𝑎𝑛−7 + 𝑎𝑛−4 𝑎0 = 7, 𝑎1 = 𝑎2 = 𝑎3

= 0, 𝑎4 = 4, 𝑎5 = 𝑎6
= 0 

{0,0,0,

1,0,0,1

} 

? Sloane 

A135435 

Reed Jameson 
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Note: the sequence ‘Sloane 136598’ is the negative continuation of the sequence ‘Reed 

Jameson’. 

The Fibonacci sequence and the Lucas sequence are closely related with the number Φ =
1.618… of the Golden Ratio (Φ =  𝜑). 

The characteristic equation of the Fibonacci sequence and the explicit formulae for the 

Fibonacci and Lucas sequences read: 

𝑥2 − 𝑥 − 1 = 0 where the solutions 𝜑 =
1 + √5

2
 and 𝜓 =

1 − √5

2
  

𝐹𝑛 =
𝜑𝑛 − 𝜓𝑛

𝜑 − 𝜓
=
1

√5
[(
1 + √5

2
)

𝑛

− (
1 − √5

2
)

𝑛

] 

𝐿𝑛 = (
1 + √5

2
)

𝑛

+ (
1 − √5

2
)

𝑛

 

(34) 

 

There are many other connections between the Lucas numbers and the Fibonacci 

numbers, which will not be discussed here (e.g. 𝐿2𝑛 + 2(−1)
𝑛−1 = 5𝐹𝑛

2, or 𝐿𝑛 =
𝐹𝑛−1 + 𝐹𝑛+1). 

Concerning the Reed Jameson sequences, there are similar interesting connections with 

prime numbers (as with the Perrin sequence (see Appendix)). 

 

 

More properties of the sequences from Table 10  

4.10.1.1 REPRESENTATIONS USING MATRICES 

Fibonacci 𝐹𝑛: 𝑄 = [
 𝐹2  𝐹1
 𝐹1  𝐹0

] = [
1 1
1 0

] 𝑄𝑛 = [
𝐹𝑛+1 𝐹𝑛
𝐹𝑛 𝐹𝑛−1

] 

Lucas 𝐿𝑛: 𝑄 = [
 𝐿2  𝐿1
 𝐿1  𝐿0

] = [
1 1
1 0

] 𝑄𝑛 = [
𝐿𝑛+1 𝐿𝑛
𝐿𝑛 𝐿𝑛−1

] 

Padovan and Perrin 𝑃𝑛: 𝑄 = [ 
0 1 0
0 0 1
1 1 0

]  𝑄𝑛 = [ 
𝑃𝑛−5 𝑃𝑛−3 𝑃𝑛−4
𝑃𝑛−4 𝑃𝑛−2 𝑃𝑛−3
𝑃𝑛−3 𝑃𝑛−1 𝑃𝑛−2

] 

 

Reed Jameson (‘5# + Sloane A133394, also A136598) 𝑅𝑆𝑃𝑛, 𝑅𝑆𝑀𝑛: 
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 𝑄 =

(

 
 

0 1 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0)

 
 
; 𝑅𝑆𝑃𝑛 = 𝑄

𝑛.

(

 
 

2
0
2
0
5)

 
 
=

(

 
 

0 1 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0)

 
 

𝑛

.

(

 
 

2
0
2
0
5)

 
 

 

𝑅𝑆𝑀𝑛 = 𝑄
𝑛.

(

 
 

0
−3
0
0
5 )

 
 
=

(

 
 

0 1 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0)

 
 

𝑛

.

(

 
 

0
−3
0
0
5 )

 
 

 

Note: 𝑅𝑆𝑃𝑛 provides the sequence members in the positive direction, 𝑅𝑆𝑀𝑛 in the 

negative direction. 

4.10.1.2 MATHEMATICA PROGRAMS FOR CREATING RECURSIVE SEQUENCES 

 

Fibonacci 𝑭𝒏:  
LinearRecurrence[{1,1},{0,1},30]  

 

Table[Fibonacci[n],{n,0,30}] 

 

{0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181,…} 

 

Lucas 𝑳𝒏:   
LinearRecurrence[{1,1},{2,1},30]  

 

Table[LucasL[n],{n,0,30}] 

 

{2,1,3,4,7,11,18,29,47,76,123,199,322,521,843,1364,2207,3571,5778,…} 

Pell 𝑷𝒏:  
LinearRecurrence[{2,1},{0,1},30] 

 

CoefficientList[Series[x/(1-2*x-x^2),{x,0,30}],x] 

 

Expand[Table[((1+Sqrt[2])^n-(1-Sqrt[2])^n)/(2Sqrt[2]),{n,0,30}]] 

 

a=1;b=0;c=0;lst={b};Do[c=a+b+c;AppendTo[lst,c];a=b;b=c,{n,30}];lst 

 

{0,1,2,5,12,29,70,169,408,985,2378,5741,13860,33461,80782,195025,…} 

 

Pell-Lucas 𝑸𝒏 
LinearRecurrence[{2,1},{2,2},30] 

 

aa={};Do[k=Expand[((1+Sqrt[2])^n+(1-Sqrt[2])^n)]; 

AppendTo[aa,k],{n,0,30}]; aa 

 

a=c=0; t={b=2}; Do[c=a+b+c; AppendTo[t,c]; a=b;b=c,{n,40}]; t 

 

{2,2,6,14,34,82,198,478,1154,2786,6726,16238,39202,94642, 228486,…} 
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Padovan 𝑷𝒏 
LinearRecurrence[{0,1,1},{1,1,1},30] 

 

LinearRecurrence[{0,1,1},{1,0,0},30] 

 

a[0]=1; a[1]=a[2]=0; a[n_]:=a[n]=a[n-2]+a[n-3]; Table[a[n],{n,0,30}] 

 

CoefficientList[Series[(1-x^2)/(1-x^2-x^3),{x,0,30}],x] 

 

More Mathematica programs: please contact the author. 

 

 

{1,1,1,2,2,3,4,5,7,9,12,16,21,28,37,49,65,86,114,151,200,265,351,…}  
or 

{ 1,0,0,1,0,1,1,1,2,2,3,4,5,7,9,12,16,21,28,37,49,65,86,114,151,200,…}  

 

 

 

Tribonacci 𝑻: 
LinearRecurrence[{1,1,1},{0,1,2},30] 

{0,1,2,3,6,11,20,37,68,125,230,423,778,1431,2632, 4841,8904,16377,…} 

 

Quadranacci 𝑸  
LinearRecurrence[{1,1,1,1},{0,1,2,4},30] 

{0,1,2,4,7,14,27,52,100,193,372,717,1382,2664,5135,9898,19079,36776,…} 

 

 

Perrin 𝑷𝒏 
LinearRecurrence[{0,1,1},{3,0,2},30] 

 

CoefficientList[Series[(3-x^2)/(1-x^2-x^3),{x,0,30}],x] 

 

explFunc=RSolve[{f[n]==f[n-2]+f[n-3],f[0]==3,f[1]==0,f[2]==2},f[n],n] 

Round[Table[Evaluate[f[n]/.First[explFunc]],{n,0,30}]] (*fast*) 

 

More Mathematica programs: please contact the author. 

 

{3,0,2,3,2,5,5,7,10,12,17,22,29,39,51,68,90,119,158,209,277,…} 

 

‘negative’ Perrin 𝑷𝒏  
LinearRecurrence[{-1,0,1},{3,-1,1},30] 

 

explFunc=RSolveValue[{f[n]==-f[n-1]+f[n-3], 

f[0]==3,f[1]==-1,f[2]==1},f,n] 

Round[Table[Round[explFunc[n]],{n,0,30}]] (*fast*) 

 

 

{3,-1,1,2,-3,4,-2,-1,5,-7,6,-1,-6,12,-13,7,5,-18,25,-20,2,23,-43,45,-

22,-21,66,-88,67,-1,-87} 

 

‘5’+ Sloane 133394 (Reed Jameson) 𝑹𝒏 
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LinearRecurrence[{0,1,0,0,1},{5,0,2,0,2},30]  or: 

RecurrenceTable[{a[n]==a[n-2] 

+a[n-5],a[1]==5,a[2]==0,a[3]==2,a[4]==0,a[5]==2},a,{n,1,30}] 

 

reedJamesonMatrix={{0,1,0,0,1},{1,0,0,0,0},{0,1,0,0,0},{0,0,1,0,0},{0,

0,0,1,0}}; vect={{2},{0},{2},{0},{5}}; 

Flatten[Table[(MatrixPower[reedJamesonPlusMatrix,n].vect)[[1]], 

{n,4-4,100-5}]] 

 

More Mathematica programs: please contact the author. 

identical 

to{5,0,2,0,2,5,2,7,2,9,7,11,14,13,23,20,34,34,47,57,67,91,101,138,158,…

} 

Sloane A136598: 𝑹𝒏
∗
 

LinearRecurrence[{0,0,-1,0,1},{5,0,0,-3,0},30] 

 

explFunc=RSolve[{f[n]==-f[n-3]+f[n-5],f[0]==5,f[1]==0,f[2]==0,f[3]==-

3,f[4]==0},f[n],n]//Simplify 

Round[Table[Evaluate[f[n]/.First[explFunc]],{n,0,100}]] 

 

{5,0,0,-3,0,5,3,0,-8,-3,5,11,3,-13,-14,2,24,17,-15,-38,-15,39,55,…} 

 

Sloane A135435 
LinearRecurrence[{0,0,0,1,0,0,1},{7,0,0,0,4,0,0},30] 

 

explFunc=RSolve[{f[n]==f[n-4]+f[n-7],f[0]==7,f[1]==f[2]==f[3]==0, 

f[4]==4,f[5]== f[6]==0},f[n],n]//Simplify 

Round[Table[Evaluate[f[n]/.First[explFunc]],{n,0,100}]] 

 

{7,0,0,0,4,0,0,7,4,0,0,11,4,0,7,15,4,0,18,19,4,7,33,23,4,25,52,27,11,5

8,75,31,36,110,102,42,94,185,133,78…} 

 

(unknown,’negative A135435’) 
LinearRecurrence[{0,0,-1,0,0,0,1},{7,0,0,-3,0,0,3},30] 

 
{7,0,0,-3,0,0,3,7,0,-3,-10,0,3,13,7,-3,-16,-17,3,19,30,4,-22,-46,-

21,25,65,51,-21,-87,-97,0,…} 

 

4.10.1.3 COMPARISON OF THE DIFFERENT METHODS USED FOR CALCULATION 

As you can see, there are a number of calculation methods that differ very much in 

memory demands and computing speed. 

1) LinearRecurrence[…]: best method for situation 1).  

(alternatively: recurrenceTable[{a[n]==a[n-2]+…]; this function is 

more flexible and has more options) 

2) Method using matrices: 𝑀𝑛 ∗ initVec. Unbeatably fast for Situation 2). Perhaps 

also suitable for Situation 1). 
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3) Computation with an explicit function (RSolveValue[]): this depends on 

the complexity of the explicit solution of the recurrence equation. Not suitable 

for Situation 1). 

4) CoefficientList[…] 

5) Computation by means of the zeros of the characteristic polynom: Solve[]… 

6) Calculation by the definition (e.g. Do[c=a+b+c;AppendTo[lst,c];a=b;b=c,…): 

slow, but in some cases quite practical! 

7) Recursive method: (e.g. : a[0]=1; a[1]=a[2]=0; a[n_]:=a[n]=a[n-2]+a[n-

3];): impractical! 

 

We distinguish between the following situations: 

1) calculation of the recursive sequence from the beginning up to a limit 𝑁  

2) calculation of single sequence members without knowing a predecessor (will be used 

for very large indices). In this case mainly the matrix method or the calculation by explicit 

formulae come into play. 

 

Here is an example of case 2: the sequence ‘5+Reed Jameson’: 
f[n]==f[n-2]+f[n-5],f[0]==5,f[1]==0,f[2]==2,f[3]==0,f[4]==2 

 

 

𝑁=10000000. The computation time for the 𝑛th sequence member is: 

 

method 1: 476 seconds 

method 2: 0.0156 seconds 

method 3: 2964 seconds  

(The explicit solution is complicated. It requires the calculation of the zeros of 

polynomials of degree 5. The solution of the recursive equation, although simplified with 

the Mathematica function ‘Simplify’, still covers 15 Mathematica Notebook pages …) 

 

Peter Danzeglocke has come up with a method that uses a function 

MatrixPowerMod[] instead of the function MatrixPower[] and that works only 

with values modulo 𝑛. This method can be applied to all mentioned recursive sequences 

and provides the sequence values modulo 𝑛 in unbeatably short computational times. 

 

4.10.1.4 CONNECTION TO PRIME NUMBERS 

Some of these linear recursively defined sequences show interesting relationships to 

prime numbers. For a long time it was believed that the terms of the Perrin sequence 

would always be divisible by prime numbers for prime indices: 

𝑃𝑛 ≡ 0 (𝑚𝑜𝑑 n), if 𝑛 ∈ ℙ 

This would be a method for checking prime numbers with a single modulus operation. 

The computation of 𝑃𝑛 requires only additions, or additional powers and multiplications, 

if an explicit formula is known for the 𝑛th term of the recursively defined sequence.  
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Perrin's method of checking primes is perfect at first glance. But only at first glance: it 

only works up to indices <271441. This index gives the value 0 but it should actually give 

a result > 0  for the modulus test! This index denoted the first Perrin pseudoprime 

number. Since then, hundreds more have been discovered (see Chapter 20.3). It is, 

however, impressive that this method of determining prime numbers works perfectly up 

to 271441! Once again it becomes clear that numerical evidence cannot be used as a proof. 

In principle, the recursive computation of the sequence terms is much faster for small 

indices (for many sequences the computational time is approximately 100 times faster 

than the explicit calculation in the range up to 106). For very large indices, however, this 

behaviour probably changes in favour of the explicit calculation 

Reed Jameson discovered a similar method for checking prime numbers, which also 

evaluates the modulus values of sequence members having prime indices. In his method, 

however, two sequences are used. These are the sequences: ‘5+ Sloane 133394’ and the 

complementary sequence 𝐹𝑛
∗: ‘Sloane A136598’. (Note: the complementary sequence 

results when the 'normal' sequence is extended in the opposite direction towards negative 

indices). Then the sum of both sequences is evaluated: 

 𝑺𝒏 = (𝑭𝒏 𝐦𝐨𝐝 𝒏) + (𝑭𝒏
∗  𝒎𝒐𝒅 𝒏). It follows that 𝑺𝒏 = 𝟎 if (and only if) 𝑛 is a prime 

number (we start with index 0). This conjecture has been verified numerically up to  

n = 1010 . However, Peter Danzeglocke discovered numerous Reed Jameson pseudo-

primes in the area 𝑛 > 1015.27 

Still unknown is a method similar to that of Reed Jameson. Here we have the two 

(mutually complementary) sequences: 

𝑭𝒏: “Sloane 135435” and the complementary sequence 𝑭𝒏
∗ . 

Again we build up the sum sequence 𝑺𝒏 = (𝑭𝒏 𝒎𝒐𝒅 𝒏) + (𝑭𝒏
∗  𝒎𝒐𝒅 𝒏). The result is 

that 𝑺𝒏 = 𝟎, if 𝑛 is a prime number. This conjecture was checked by Peter Danzeglocke 

numerically up to 𝑛 =  109. So far, no pseudo prime numbers for this sequence are known 

(as of December 2020). However there are about 10 per cent “trivial” pseudoprimes, 

which can, however, be separated easily, because for all pseudoprimes of this sequence, 

the following obtains:  

𝑭𝒏 ≡ 0 (mod 2) ||𝑭𝒏 ≡ 0 (mod 5). 

 

Here are a few plots of the interesting sum sequences of the modulus values of the 

sequences discussed above: 

 
27 Danzeglocke tested the Reed Jameson conjecture for all Fermat pseudoprimes to base 2 in the 
range up to 𝑛 < 264. See appendix “Reed Jameson pseudo primes”. 
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Figure 11. Reed Jameson sequence: plot of the 0 positions of the sum of the modulus values  

 

Figure 12. Reed Jameson sequence: plot of the sum of the modulus values  
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Figure 13. Perrin sequence: plot of the mod values. Zeros are (almost always) at prime positions  

 

Note: Mathematica programs for creating the graphs can be found in the Appendix (). 

 

4.10.2 FIBONACCI PRIME AND PSEUDOPRIME NUMBERS 

A Fibonacci prime is a prime number that is also a member of the Fibonacci sequence. 

Let us take a closer look at the Fibonacci sequence and mark the values belonging to 

prime indices: 

0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,

4181,6765,10946,17711,28657,46368,75025,121393,196418,31781

1,514229,832040,1346269 

 

Now we observe that for many prime indices, the corresponding Fibonacci numbers𝐹𝑛 

are prime numbers (hits in red, counterexamples in purple). Indeed the following obtains: 

If 𝐹𝑛 is a prime (𝑛 ≠ 2 𝑎𝑛𝑑 𝑛 ≠ 4), then 𝑛 is also a prime. The converse of this statement, 

however, is not true. Fibonacci numbers that belong to prime indices, but are not primes 

themselves, are a subset of the Fibonacci pseudoprime numbers. Fibonacci pseudoprime 

numbers are defined as composite numbers for which the congruence 𝑉𝑛 ≡ 1 (mod 𝑛) 
obtains. 

Furthermore, the following statements obtain: 
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If 𝑛 is a prime number, then: 

𝐹𝑛 ≡ 0 (mod 𝑛) if 𝑛 ≡ 0 (mod 5) 
𝐹𝑛−1 ≡ 0 (mod 𝑛) if 𝑛 ≡ ±1 (mod 5) 
𝐹𝑛+1 ≡ 0 (mod 𝑛) if 𝑛 ≡ ±2 (mod 5) 

 

The first condition only applies to 𝐹5: 𝐹5 (mod 5) ≡ 5(mod 5) ≡ 0 

Here an example for the second condition: 𝑛 = 11;  𝑛 ≡ 1(mod 5) ⇒ 𝐹10 ≡
0(mod 11) 

An example for the third condition: 𝑛 = 13;  𝑛 ≡ −2(mod 5) ⇒ 𝐹14 ≡ 0(mod 13) 

Record 

The largest currently known Fibonacci prime number is 𝑭𝟏𝟎𝟒𝟗𝟏𝟏. It has 21925 decimal 

digits. It is still unknown (as of Dec. 2015) whether there are infinitely many Fibonacci 

prime numbers. 
 

Mathematica: 

Select[Fibonacci[Range[400]], PrimeQ] 
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4.10.3 META-FIBONACCI SEQUENCES 

In meta-Fibonacci sequences, the next sequence member is not calculated directly from 

the values of the two preceding members but indirectly via offsets or indices. The first 

meta-Fibonacci sequence occurring in the literature is Hofstadter's famous Q- sequence28: 

𝑄(𝑛) = 𝑄(𝑛 − 𝑄(𝑛 − 1)) + 𝑄(𝑛 − 𝑄(𝑛 − 2)), 𝑛 > 2  

with 𝑄(1) = 𝑄(2) = 1 
(35) 

 

The sequence seems to be rather chaotic at first sight, but it shows generational-like 

structures. The sequence is still widely unexplored. The first terms are: 

1 1, 2, 3, 3, 4, 5, 5, 6, 6, 6, 8, 8, 8, 10, 9, 10, 11, 11, 12, 12, 12, 12, 16, 14, 

14, 16, 16, 16, 16, 20, 17, 17, 20 

Instead of adding the two preceding values, as in the case of the Fibonacci sequence, the 

two preceding values tell us how far we have to go back in the sequence to get the numbers 

that we want to add. 

 
Figure 14. Hofstadter’s Q sequence: a meta-Fibonacci sequence  

Mathematica: 

a[1] = a[2] = 1; a[n_] := a[n] = a[n - a[n - 1]] + a[n - a[n - 2]];  

ListPlot[Table[{n,a[n]},{n,1,1000}],PlotRange->Full] 

  

 
28 Hofstadter: Gödel, Escher, Bach p. 149 
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4.11 CARMICHAEL AND KNÖDEL NUMBERS 

A (composite) number n is called a Carmichael number, if: 

𝑎𝑛−1 ≡ 1 (mod 𝑛), for all 𝑎 coprime to 𝑛, 𝑎 < 𝑛. For the divisors of 𝑛 the congruence 

does not hold. The smallest Carmichael number is 561. The prime factor decomposition 

of 561 is 561 = 3 ⋅ 11 ⋅ 17 

 

There are infinitely many Carmichael numbers. Here are all Carmichael numbers up to 

10,000: 

Carmichael number Prime factors 

561 3⋅11⋅17 

1105 5⋅13⋅17 

1729 7⋅13⋅19 

2465 5⋅17⋅29 

2821 7⋅13⋅31 

6601 7⋅23⋅41 

8911 7⋅19⋅67 

10585 5⋅29⋅73 

15841 7⋅31⋅73 

29341 13⋅37⋅61 

41041 7⋅11⋅13⋅41 

46657 13⋅37⋅97 

52633 7⋅73⋅103 

62745 3⋅5⋅47⋅89 

63973 7⋅13⋅19⋅37 

75361 11⋅13⋅17⋅31 

Figure 15. Carmichael numbers up to 10,000 

The largest known Carmichael number (as of Dec. 2015) cannot be printed here because 

it has more than 10 billion prime factors and about 300 million decimal digits (that is, 

there is only a construction principle).29 It is easy to prove that every Carmichael number 

must contain at least three different prime factors and be square-free. 

There are construction methods that allow the construction of very large Carmichael 

numbers. Conversely, it is very difficult and complex to test very large numbers for their 

Carmichael properties, since they have to be factored for this purpose. 

Let 𝐶(𝑛) be the number of Carmichael numbers up to a given n. Then the following 

estimates exist: 

𝒏
𝟏
𝟑 < 𝑪(𝒏) < 𝒏𝒆(−

𝐥𝐧𝒏 𝐥𝐧 𝐥𝐧 𝐥𝐧𝒏
𝐥𝐧 𝐥𝐧𝒏

)  

 
29 http://math.ucsd.edu/~kedlaya/ants10/poster-hayman.pdf 

http://math.ucsd.edu/~kedlaya/ants10/poster-hayman.pdf
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A generalization of the Carmichael numbers leads to the ‘Knödel’ numbers: 

𝐾𝑛denotes the set of composite numbers 𝒂𝒎−𝒏 ≡ 𝟏 (𝐦𝐨𝐝 𝒎) for all 𝑎 that are coprime 

to 𝑚 and 𝑎 < 𝑚. The special case for 𝑛 = 1 results in the Carmichael numbers. Each 

composite number 𝑚  is a Knödel number 𝐾𝑛  with the property 

𝑛 = 𝑚 − 𝜑(𝑛). The first Knödel sets 𝐾𝑛 read:30 

𝒏 𝑲𝒏  

1 561, 1105, 1729, 2465, 2821, 6601, …   

2 4, 6, 8, 10, 12, 14, 22, 24, 26, …   

3 9, 15, 21, 33, 39, 51, 57, 63, 69, …   

4 6, 8, 12, 16, 20, 24, 28, 40, 44, …   

 

Mathematica:  
Cases[Range[1, 100000, 2], n_ /; Mod[n, CarmichaelLambda[n]] == 1 && ! 

PrimeQ[n]] 

4.12 EMIRP NUMBERS 

 

An emirp number is a prime number that yields a different prime when read backwards. 

The largest known emirp is (as of Oct. 2015): 

1010006 + 941992101 ⋅ 104999 + 1 

 

Mathematica: 

fQ[n_] := Block[{idn = FromDigits@ Reverse@ IntegerDigits@ n}, PrimeQ@ 

idn && n != idn]; Select[Prime@ Range@ 200, fQ] 

 

Curiosities 

The following list contains 11 consecutive prime numbers that are all emirps: 
1477271183, 1477271249, 1477271251, 1477271269, 1477271291, 1477271311, 1477271317, 

 1477271351, 1477271357, 1477271381, 1477271387 

4.13 WAGSTAFF PRIME NUMBERS 

Wagstaff prime numbers are prime numbers of the form  

𝑝 =
2𝑞 + 1

3
,where 𝑞 is an odd prime (36) 

 

 
30https://de.wikipedia.org/wiki/Knödel-Zahl 

https://de.wikipedia.org/wiki/Knödel-Zahl
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At present, 43 Wagstaff primes p are known (as of Oct. 2015). In red: PRP primes)31: 

 

Table 11: Wagstaff prime numbers: exponent q  

n  q  n q 

1 3  22 2617  

2 5  23 3539  

3 7  24 5807  

4 11  25 10501  

5 13  26 10691  

6 17  27 11279  

7 19  28 12391  

8 23  29 14479  

9 31  30 42737  

10 43  31 83339  

11 61  32 95369  

12 79  33 117239  

13 101  34 127031  

14 127  35 138937  

15 167  36 141079  

16 191  37 267017  

17 199  38 269987  

18 313  39 374321  

19 347  40 986191  

20 701  41 4031399  

21 1709  42 13347311 

  43 13372531 

 

 

Wagstaff primes can be calculated using the following Mathematica program: 

Select[Array[(2^#+1)/3&,190],PrimeQ] 

Output: 

{3,11,43,683,2731,43691,174763,2796203,715827883,2932031007403, 
768614336404564651,201487636602438195784363, 
845100400152152934331135470251, 
56713727820156410577229101238628035243, 
62357403192785191176690552862561408838653121833643} 

 
31 Pseudoprime tests provide PRPs (pseudoprime numbers) and work with probabilistic methods, 
but they provide reliable statements about primality 
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Finally, here is a Mathematica program for the prime exponents of the Wagstaff prime 

numbers: 

 
a= {}; Do[c = 1 + Sum[2^(2n - 1), {n, 1, x}]; If[PrimeQ[c], 

AppendTo[a, c]], {x, 0, 100}]; a  

4.14 WIEFERICH PRIME NUMBERS 

A prime number satisfying the congruence 2𝑝−1 ≡ 1 (mod 𝑝2)  is referred to in the 

literature as a Wieferich prime. Wieferich, at the beginning of the last century, was the 

first to explore these numbers. Let us remember the congruence relation of Fermat’s little 

theorem: 2𝑝−1 ≡ 1 (mod 𝑝). 

This is true for any odd prime. On the contrary, the above Wieferich congruence 

relationship holds only for very few prime numbers (more precisely, only for two 

numbers: 1093 and 3511). These are the only Wieferich primes currently known (as of 

Dec. 2016). It is also known that no further Wieferich primes exist up to 4.968543 ⋅ 1017 

(as of Dec. 2015). 

The patterns in the binary representation of the value of Wieferich prime numbers (more 

precisely, in the value reduced by 1) are remarkable: 

𝟏𝟎𝟗𝟐 = 𝟏𝟎𝟎𝟎𝟏𝟎𝟎𝟎𝟏𝟎𝟎𝟐, 𝟑𝟓𝟏𝟎 = 𝟏𝟏𝟎𝟏𝟏𝟎𝟏𝟏𝟎𝟐 

There is a close connection to the so-called 'powerful' numbers 𝑃𝑖, for which the 

following conditions hold: 𝑝| 𝑃𝑖 and 𝑝
2| 𝑃𝑖.  

The first ‘powerful 'numbers are: 1,4,8,9,16,25,27,32,36,49… They are all of the form 

𝑎2𝑏3 where 𝑎, 𝑏 ≥ 1. The sum of the reciprocal values of all powerful numbers is finite 

and has the value: 

∑
1

 𝑃𝑖
𝑖

=
휁(2)휁(3)

휁(6)
= 1.9435964 (37) 

 

Primes that do not satisfy the congruence condition 2𝑝 ≢ 1 (mod 𝑝2)  are generally 

referred to as non-Wieferich primes. Both are mutually complementary sets of numbers, 

i.e. if one of them is finite, then the other must be infinite. There are interesting cross-

connections to the abc conjecture (Chapter 11.1). The literature about Wieferich primes 

is very large. There are also many further surprising and interesting connections to 

Mersenne and Fermat primes, as well as to other areas of number theory.32 

Wieferich primes can be generalized to have any positive integer basis 𝑎 if they satisfy 

the following congruence: 

𝑎𝑝−1 ≡ 1 (mod 𝑝2) (38) 

 
32 https://en.wikipedia.org/wiki/Wieferich_prime 

https://en.wikipedia.org/wiki/Wieferich_prime
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The assumption is that there are infinitely many base a Wieferich prime numbers for 

every natural base 𝑎. Here an example: the following base 5 Wieferich primes are known 

for 𝑎 =  5 (as of Oct. 2016): 

2, 20771, 40487, 53471161, 1645333507, 6692367337, 188748146801 

The quotient 𝑞𝑝(𝑎) =
𝑎𝑝−1−1

𝑝
 is generally denoted as the Fermat quotient of 𝑝 to the base 

𝑎. The modulo residue of the Fermat quotient 𝑞𝑝(𝑎) has logarithmic properties. If 𝑝 is 

not a divisor of 𝑎𝑏, then: 

𝑞𝑝(𝑎𝑏) ≡ 𝑞𝑝(𝑎) + 𝑞𝑝(𝑏) (mod 𝑝) (39) 

 

More properties: 

𝑞𝑝(𝑝 − 1) ≡ 1 and 𝑞𝑝(𝑝 + 1) ≡ −1 (mod 𝑝) (40) 

 

𝑞𝑝(2) =
1

𝑝
(1 −

1

2
+
1

3
−
1

4
+⋯−

1

𝑝 − 1
) (mod 𝑝) (41) 

 

Mathematica programs for computing Wieferich primes: 

Select[Prime[Range[50000]], Divisible[2^(#-1)-1, #^2]&] 

Select[Prime[Range[50000]], PowerMod[2, #-1, #^2]==1&] 

 

There are other interesting cross-links to other areas of number theory: 

To Fermat’s theorem: 

Let be 𝒌𝒑 + 𝒍𝒑 +𝒎𝒑 = 𝟎 (𝐰𝐡𝐞𝐫𝐞 𝒌, 𝒍,𝒎 ∈ ℤ 𝐚𝐧𝐝 𝒑 ∈ ℙ). Further we assume: 𝒑 is 

not a divisor of the product 𝒌𝒍𝒎. Then 𝒑 is a Wieferich prime. 

To Mersenne primes and Fermat primes: 

Let 𝑴𝒒 be a Mersenne number with primal index q and p be a prime number 

which is a divisor of 𝑴𝒒. If 𝒑𝟐 is also a divisor of 𝑴𝒒, then 𝑴𝒒 (and only then) p is a 

Wieferich prime number. 

Double Wieferich primes: 

A pair of generalized Wieferich primes, for which 

𝑞𝑝−1 ≡ 1 (mod 𝑝2) and 𝑝𝑞−1 ≡ 1 (mod 𝑞2) (42) 

 

is called a ’double Wieferich prime’. Here is an example:  
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(83, 4871) are double Wieferich primes.  

Note: Catalan’s conjecture has been proven using properties of double Wieferich prime 

numbers (see 20.1). Many interesting monographs on Wieferich primes can be found on 

well-known websites. Here is a table of some base a Wieferich primes that are known (as 

of Oct. 2016): 

Table 12. Generalized Wieferich primes 

Base Wieferich primes with base  

1 2,3,5,7,11,13,17,19,23,29,… (all prime numbers) 

2 1093,3511 

3 11,1006003 

4 1093,3511 

5 2,20771,40487,53471161,1645333507,6692367337,188748146801 

6 66161,534851,3152573 

7 5,491531 

8 3,1093,3511 

9 2,11,1006003 

10 3,487,56598313 

11 71 

12 2693,123653 

13 2,863,1747591 

14 29,353,7596952219 

15 29131,119327070011 

16 1093,3511 

17 2,3,46021,48947,478225523351 

18 5,7,37,331,33923,1284043 

19 3,7,13,43,137,63061489 

20 281,46457,9377747,122959073 

21 2 

22 13,673,1595813,492366587,9809862296159 

23 13,2481757,13703077,15546404183,2549536629329 

24 5,25633 

25 2,20771,40487,53471161,1645333507,6692367337,188748146801 

26 3,5,71,486999673,6695256707 

27 11,1006003, 

28 3,19,23 

29 2 

30 7,160541,947270757 

31 7,79,6451,2806861 

37 2,3,77867,76407520781 

41 2,29,1025273,138200401 

43 5,103,13368932516573 

47 ??? 

53 2,3,47,59,97 

59 2777,18088417183289 

61 2 

67 7,47,268573 

71 3,47,331 

73 2,3 

79 7,263,3037,1012573,60312841,8206949094581 

83 4871,13691,315746063 

89 2,3,13 

97 2,7,2914393,76704103313 
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4.15 WILSON PRIME NUMBERS 

A prime number satisfying the congruence (𝑝 − 1)!  ≡ −1 (mod 𝑝2) is referred to in 

the literature as a ‘Wilson prime’. 

Currently, only three Wilson prime numbers are known (Nov. 2016). These are: 

𝟓, 𝟏𝟑 𝐮𝐧𝐝 𝟓𝟔𝟑 

If further Wilson prime numbers exist, these must be larger than 2 ⋅ 1013  (as of Oct. 

2016). It is generally believed that there are an infinite number of Wilson prime numbers. 

The quotient 𝑊(𝑝) is called the Wilson quotient: 

𝑊(𝑝) =
(𝑝 − 1)! + 1

𝑝
 (43) 

Wilson’s theorem states that all prime numbers p match the congruence 

(𝑝 − 1)! ≡ −1 (mod 𝑝) 

 

Here is a plot of the Wilson quotients of the first 100 prime numbers: 

 

 

Figure 16. Wilson quotients of the first 100 prime numbers (log representation)  

Mathematica: 

WilsonQuotients=Table[((Prime[i]-1)!+1)/(Prime[i]),{i,1,100}]; 

ListLogPlot[WilsonQuotients,Joined->True,PlotStyle->Black] 

For Wilson prime numbers there also exist generalizations, which are described in the 

literature. 
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4.16 WOLSTENHOLME PRIME NUMBERS 

A prime number satisfying the following congruence is called a Wolstenholme prime 

number: 

(
2𝑝 − 1
𝑝 − 1

) ≡ 1 (mod 𝑝4) (44) 

 

Please note that according to the Wolstenholme theorem for each prime 𝑝 > 3 the 

following obtains: 

(
2𝑝 − 1
𝑝 − 1

) ≡ 1 (mod 𝑝3) (45) 

 

The only currently known Wolstenholme prime numbers are (as of Oct. 2016): 

𝟏𝟔𝟖𝟒𝟑  and 𝟐𝟏𝟐𝟒𝟔𝟕𝟗. 

If there are further Wolstenholme prime numbers, these are greater than 109 . It is 

assumed that there are infinitely many Wolstenholme prime numbers. 
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4.17 RG NUMBERS (= RECURSIVE GÖDELIZED) 

4.17.1 GOCRON TYPE 6 (‘PRIME OCRONS‘) 

For this we need the definition of the GOCRON type 6 (Prime OCRON, with Gödel codes 

‘*’=0 and ‘P’=1, see Chapter 10.2.4). 

Let an RG sequence in the direction of positive indices be recursively defined as follows: 

𝒂(𝟎) = 𝒎 (with any integer number 𝒎 >= 𝟏) 

𝒂(𝒏 + 𝟏) = 𝐄𝐆𝐎𝐂𝐑𝐎𝐍𝟔(𝒂(𝒏))  
 

The sequence can also be continued in the direction of negative indices: 

𝒂(𝟎) = 𝒎 (with any integer number 𝒎 >= 𝟏) 

𝒂(𝒏 − 𝟏) = 𝐈𝐍𝐕𝐄𝐆𝐎𝐂𝐑𝐎𝐍𝟔(𝒂(𝒏))  
 

Here are a few examples: 
0,1,2,4,8,14,9,19,67,401,409,1103,305999,210535619933… 

3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3… 

5,7,5,7,5,7,5,7,5,7,5,7,5,7,5,7,5… 

6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6… 

10,12,10,12,10,12,10,12,10,12,… 

13,13,13,13,13,13,13,13,13,13,… 

 

15,11,17,43,157,2833,3463,59723,4251697,97152271… 

20,20,20,20,20,20,20,20,20,20,… 

21,37,107,367,37217,363343,30612065639… 

25,29,23,59,83,353,379,20719,448693727… 

31,31,31,31,31,31,31,31,31,31,… 

27,41,71,1153,769,349,8861,5065217,22920311… 

33,79,2221,271003,680328533… 

35,191, 15299,649093,50511459839… 

39, 331,3559,1804973,50220857249 

45,101,181,751,304553,627544381 

91,547,4463,48266149 

 

 

Here are a few examples in the direction of positive indices: 
15,28,18,30,40,36,96,168,424,12544,6845104128,351820914765360116269056 

21,26,22,16,24,56,72,84,122,928,108544,15903336184152064 

25,48,64,208,656,1968,116992,30889404792832 

27,60,34,58,100,352,3872,16016,73764,503296,360710432,2177877733799636238336 

35,112,118,456,2368,6704,10250,25128,1001488,5575424,131365666816, 

129617351244588913891122077503488 

39, 120, 512, 4032, 6586368, 1065152675904 

 

RG sequences of the 'Prime GOCRONs' have the following properties: 

1) They are either periodic or they diverge to infinity in the case of positive and 

negative indices. 

2) An exception is the 9 sequence; it goes towards infinity for negative indices and 

is not defined for positive indices. 
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3) Every non-periodic sequence has a 'centre' that lies in the neighbourhood of the 

minimum. It is the only odd composite number in this sequence. Thus, the 

sequences can be named after this single central odd number. These are the 

numerical values marked in red. 

4) In the direction of positive indices, there is a strong tendency to increase the 

degree of 'compositeness'. Towards negative indices there is a tendency to 

increase 'primality'. This is expressed by the fact that the ‘centre element’ (which 

is composite and uneven) is the index at which a ‘turn over’ occurs, from the status 

‘prime’ to the status ‘composite’ (or vice versa, depending upon the direction from 

which one is coming). 

5) The following RG sequences are periodic (classified according to the central odd 

composite element): 

3,5,6,7,10,12,13,20,31,61,97,250,457,41112 
 

RG sequences of 'prime OCRONs' (if they are not periodic) come out from infinity as 

prime numbers, 'hang around' a little bit among the 'finite' numbers, change (turn over) to 

composite numbers at exactly one index, stay ‘even’ from there on and then disappear 

again into the infinite. Here are a few plots of RG sequences (with the “transformation 

point” marked in red, to the left of it: prime numbers, to the right of it: composite, even 

numbers): 

 

 
Figure 17. RG sequence ‘15’ (log plot)  

Sequence: 
97152271,4251697,59723,3463,2833,157,43,17,11,15,28,18,30,40,36,96,168

,424,12544,6845104128 
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Figure 18. RG sequence ‘21’ (log plot)  
30612065639,363343,37217,367,107,37,21,26,22,16,24,56,72,84,122,928,10

8544,15903336184152064 

 

Figure 19. RG sequence ‘25’ (log plot)  
448693727,20719,379,353,83,59,23,29,25,48,64,208,656,1968,116992,30889

404792832 
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Figure 20. RG sequence ‘27’ (log plot)  
22920311,5065217,8861,349,769,1153,71,41,27,60,34,58,100,352,3872,1601

6,73764,503296,360710432,2177877733799636238336 

 

Figure 21. RG sequence ‘33’ (log plot)  
680328533,271003,2221,79,33,32,52,42,50,224,2304,491776,14160388,70967

016210563072 
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Figure 22. RG sequence ‘9’ (log plot)  
210535619933,305999,1103,409,401,67,19,9,14,8,4,2,1,0 

The application of this recursive rule divides up the set of natural numbers into classes. 

All numbers of a class end up in the manner described above sooner or later. The 

similarity with the situation in the aliquot sequences is striking. One could speak here of 

'related' numbers that build up a family, as in the case of the aliquot sequences (see 

Chapter 20.9.2.2). 

4.17.2 GOCRON TYPE 4 (WITH THE SYMBOLS ‚‘2’,‘*’,‘P’ AND ‘^’) 

For this we need the definition of the GOCRON type 4 (with the Gödel codes ‘*’=0, 

‘P’=1, ‘2’=2 and ‘^’=3, see Chapter 10.2.2). 

Let a RG sequence in the direction of positive indices be recursively defined as follows: 

𝒂(𝟎) = 𝒎 (with any integer number 𝒎 >= 𝟏) 

𝒂(𝒏 + 𝟏) = 𝐄𝐆𝐎𝐂𝐑𝐎𝐍𝟒(𝒂(𝒏))10 

 

The sequence can also be continued in the direction of negative indices: 

𝒂(𝟎) = 𝒎 (with any integer number 𝒎 >= 𝟏) 

𝒂(𝒏 − 𝟏) = 𝐈𝐍𝐕𝐄𝐆𝐎𝐂𝐑𝐎𝐍𝟒(𝒂(𝒏))  

 

 

RG sequences of the 'type 4 EGOCRONs' have the following properties: 

1) In the direction of negative indices (n->EGOCRON4), the RG sequence 

grows faster than exponentially (see Figure 23) for all initial values > 𝟐.  

2) In the direction of positive indices (EOCRON4-> n), each RG sequence ends 

up with the constant value 6. Before this happens, however, the sequence can 
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attain astronomically high values before finally ending up on value 6. There 

is an assumption that is based on the empirical data but it is as yet unproved. 

3) There is always a ‘turn over’ value, from which point on all sequence 

members remain even. 

 

Here are a few plots of RG sequences in the direction of negative indices using different 

initial values: 

 

 

Figure 23. RG sequences in negative direction (type EGOCRON4)  

Here are a few graphs of RG sequences in the direction of positive indices with different 

initial values (value of ‘turn over’ index, from which all values remain straight, is 

indicated): 
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Figure 24. RG sequences in positive direction (type EGOCRON4): always end ing up with 6 

Further illustrations on this topic can be found in the Appendix 20.7. 

The Mathematica programs used to create the graphics can also be found in the Appendix. 

 

The same applies as in the previous chapter: the application of this recursive rule splits 

up the set of natural numbers into classes. All the numbers of one class are "friends" and 

end in the same way. 
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5 DIGRESSION: RIEMANN ’S ZETA FUNCTION 휁(𝑠) 

5.1 GENERAL 

The Riemann zeta function is one of the mysteries of mathematics. Its zeros are especially 

puzzling. There are the so-called ‘trivial’ zeros in the real domain. These zeros all lie at 

even negative integer values −2,−4,−6,… , (− 2𝑛). But there are infinitely many zeros 

in the complex domain, all of which lie on the so-called 'critical' line Re (s) = 1/2. There 

is no simple formula for the position of these zeros. They are seemingly chaotic and 

randomly distributed and therefore possess similarly mysterious properties as the prime 

numbers. In fact, the location of the non-trivial zeros is very closely related to the 

distribution of the prime numbers (see e.g. Chapter 8.6, Formula (131)). 

Entire books have been devoted to a discussion of the properties of the zeta function, so 

we will not discuss them further here. In simple terms, one can say that from the 

knowledge of the non-trivial zeros, the position (and distribution) of the prime numbers 

can be calculated and vice versa. This relationship, however, is not a simple one-to-one 

relationship between zeros and prime numbers but rather resembles a transformation 

(such as the Fourier transform, which establishes the connection between the time domain 

and the frequency domain). We could speak here of different domains such as the ‘prime 

number domain’ and the 'zeta domain'. 

 

We need to clarify here: the statement that all non-trivial zeros lie on the critical straight 

line Re (s) = 1/2 (this is the famous Riemann conjecture) has neither been proved nor 

disproved. However, it is probably true: the numerical evidence in its favour is 

overwhelming. Although it is so easy to formulate, the 'Riemann conjecture' has so far 

resisted all attempts (including those of the greatest mathematicians) at proof! For 

example, it might theoretically happen that there are zeros in unimaginably high number 

regions that lie apart from the critical line… The history of mathematics has taught us 

that we cannot always trust in the numerical evidence. Just consider the fact that the 

asymptotic formula for the prime counting function Li (x) ≈ π (x) always yields too large 

values33. This is certainly true up to 1026, but it has been proved by Skewes (1933) that 

𝐿𝑖(𝑥) < 𝜋(𝑥)  can happen! Skewes showed that the sign of 𝐿𝑖(𝑥) − 𝜋(𝑥)  changes 

infinitely often, and he proved that the point of the first sign change is less than 1010
1034

! 

This upper limit has now been considerably reduced to 𝑒727,95133. 

 

Nevertheless, no mathematician believes that Riemann's conjecture is wrong! However, 

the fact that it has not yet been proved, despite the enormous efforts that have been made, 

leads many to suppose that Riemann’s conjecture belongs to the category of unprovable 

mathematical propositions. It has been known, at least since the time of Gödel, that there 

are mathematical propositions that are true but not provable, and Gödel, in fact, proved 

this. This provides plenty of material for philosophical speculation. Why did God, when 

he created mathematics and the numbers, also create rules such that something could be 

'true' without a compelling reason? For if there were a compelling reason, there would 

also be a proof… 

 

 
33  https://en.wikipedia.org/wiki/Prime-counting_function 

https://en.wikipedia.org/wiki/Prime-counting_function
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For enthusiasts: a few special values of the zeta function that can be represented by 

explicit formulae: 

𝜻(𝟐) =
𝝅𝟐

𝟔
 

𝜻(𝟑) =
𝟓

𝟒
𝐋𝐢𝟑 (

𝟏

𝝉𝟐
) +

𝟏

𝟔
𝝅𝟐 𝐥𝐧 𝝉 −

𝟓

𝟔
𝐥𝐧𝟑 𝝉 

𝜻(𝟑) =
𝟔

𝒅(𝟎) −
𝟏𝟔

𝒅(𝟏) −
𝟐𝟔

𝒅(𝟐) −
𝟑𝟔

𝒅(𝟑) −
 ⋱

 

(where 𝑑(𝑛) = 34𝑛3 + 51𝑛2 + 27𝑛 + 5) 

(with the value of the Golden ratio 𝝉:
𝟏+√𝟓

𝟐
 as well as Li3(𝑥): the polylogarithm function 

of the 3rd order)34 

The so called prime zeta function 𝑃(𝑠) = ∑
1

𝑝𝑠𝑝 𝑝𝑟𝑖𝑚𝑒  

can easily be calculated from the ‘normal’ zeta function: 

𝑃(𝑠) = ∑
𝜇(𝑛)

𝑛

∞

𝑛=1

ln 휁(𝑛𝑠) (46) 

 

The first 20 non-trivial zeros of the zeta function along the critical line (with an 

accuracy of 10 decimal digits): 

{14.13472514, 21.02203964, 25.01085758, 30.42487613, 

32.93506159, 37.58617816, 40.91871901, 43.32707328, 

48.00515088, 49.77383248, 52.97032148, 56.44624770, 

59.34704400, 60.83177852, 65.11254405, 67.07981053, 

69.54640171, 72.06715767, 75.70469070,77.14484007} 

Mathematica code: 

Table[N[Im[ZetaZero[n]],10],{n,20}] 

 

Along the critical line, it is practical to split up the zeta function as follows: 

 

𝜻 (
𝟏

𝟐
+ 𝒊 𝒕) = 𝒁(𝒕)𝒆−𝒊𝝑(𝒕) (47) 

 

(where 𝑍(𝑡) and 𝜗(𝑡) are the Riemann-Siegel functions). 

 
34 Journal of Computational and Applied Mathematics 121 (2000) pp. 247-296 
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Many books have been written about the zeta function – see, for example, Edwards (1974) 

and Sautoy (2004) in the Bibliography. 

Note: the Riemann zeta function has generalizations (for example, the 'Hurwitz' or 'Lerch' 

zeta functions, which are mostly named after their discoverers). Of these generalized zeta 

functions, at least twelve versions are mentioned in the mathematical literature. 
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Figure 25. Parametric 3D plot (real and imaginary parts) of the zeta function including zeros  

The zeta function with zeros as a 

parametric 3D plot. 

The zeta function along the critical 

line is complex-valued. The critical 

line goes upwards and the complex 

function value moves in the x-y 

plane. The zero points are marked as 

small spheres. The zeta function 

spirals clockwise upwards and 

intersects the vertical z-axis at the 

zero points. 

The Mathematica program for 

creating the graphics is given in the 

Appendix under ‘Riemann’s zeta 
function’. 
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Figure 26. Parametric 3D plot (absolute and argument parts) of the zeta function including zeros  
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The next graph shows, as Figure 26, the zeta function along the critical line (red: 

absolute value, black: phase (argument), as a 2D plot. The argument of the zeta function 

is closely related to the Riemann-Siegel function 𝜗(𝑡) (see (47)). 

 
Figure 27. Absolute value and phase of the zeta function along the crit. line (0-70) 

The phase of the zeta function jumps around the zeros by the value + 𝜋. The phase of a 

function is defined only in the interval [−𝜋,+ 𝜋]. Therefore, its values are limited to this 

range. The Riemann-Siegel function 𝜗(𝑡) , however, describes a continuous phase. 

Because of the ambiguity of 𝑒−𝑖𝜗(𝑡) the same values are obtained. It can be said that the 

continuous pieces of the phase of the zeta function can be brought to coincide with the 

continuous Riemann-Siegel function −𝜗(𝑡) along the critical straight line by shifting 

along the y-axis. This is demonstrated in the following graph between the first and second 

zero (between 14 and 21). 

 

Figure 28. Comparison of the phase of the zeta function with the (negative) Riemann -Siegel 
function. 
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Surprisingly the Riemann-Siegel function 𝜗(𝑡) can be calculated without knowledge of 

the zeta function, only with the aid of the gamma function. It is quite 'inconspicuous', but 

it has jumps because the arguments can only have values between 𝜋 and – 𝜋: 

𝜗(𝑡) = Im(ln (𝛤 (
1

4
+
𝑖 𝑡

2
))) −

𝑡

2
ln 𝜋 =Arg (𝛤 (

1

4
+
𝑖 𝑡

2
)) −

𝑡

2
ln 𝜋 (48) 

 

Note: for calculation with Mathematica, the normal Γ function should not be used to 

calculate the term ln(𝛤(… )). This should be done by the function ‘LogGamma’. The 

reason for this is that the branch structure in the complex domain is more complicated 

for the normal gamma function, and only the main value of the logarithm would be 

obtained. The LogGamma function overcomes this problem. 

If we normalize the phase of 휁(
1

2
+ 𝑖𝑡) by the factor 

1

𝜋
, we get a jump of +1 at each zero. 

If we do the same with −𝜗(𝑡) and subtract these two functions from each other (and add 

1), we get a counting function for the zeros of the zeta function! More details can be 

found in the Chapter 5.5. 

 

5.2 THE DIFFERENT REPRESENTATIONS OF 휁(𝑠) 

A book about primes must include the most important representations of the zeta 

function. 

First of all, the original definition of the zeta function is extremely simple, so people can 

understand it without necessarily having read mathematics: 

 

휁(𝑠) = 1 +
1

2𝑠
+
1

3𝑠
+⋯ =∑

1

𝑛𝑠

∞

𝑛=1

 (Re(𝑠) > 1) (49) 

 

Already Euler proved in the 18th century that 휁(2) = 1 +
1

4
+
1

9
+

1

16
+⋯ =

𝜋2

6
. 

For all even positive arguments, there is the simple formula: 

 

휁(2𝑛) = (−1)𝑛−1
(2𝜋)2𝑛𝐵2𝑛

2(2𝑛)!
 (𝐵𝑛: Bernoulli − numbers, n = 1,2, … ) (50) 

 

For the positive odd numbered arguments there are also formulae; these, however, are 

somewhat more complex, e.g. : 

 

휁(3) =
7𝜋3

180
− 2∑

1

𝑛3(𝑒2𝜋𝑛 − 1)

∞

𝑛=1

 (51) 

 

For negative integer arguments: 
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휁(1 − 𝑛) = −
𝐵𝑛
𝑛

 (52) 

 

Some examples: 휁(0) = −
1

2
, 휁(−1) = −

1

12
, 휁(−3) = −

1

120
  

 

The product formula (from which elementary methods (49) can be deduced) is also easy 

to understand: 

휁(𝑠) =
1

(1 −
1
2𝑠) (1 −

1
3𝑠) (1 −

1
5𝑠
)… 

=∏
1

(1 −
1
𝑝𝑠)

∞

𝑝∈ℙ

 (𝑅𝑒(𝑠) > 1) (53) 

 

Most notable is a theorem proved by the Russian mathematician Voronin that the zeta 

function can approximate any other function with arbitrary precision (more precisely, 

every holomorphic complex function within an area with radius 
1

4
, without zeros). 

Descriptively speaking: every complex-valued function, however chaotic and however 

complicated its landscape may be, with all the 'hills' and 'valleys', will also appear 

‘somewhere’ in the landscape of the complex zeta function, if one only searches far 

enough in the infinite landscapes of the zeta function … 

The derivative of the zeta function is closely connected with the Von Mangoldt function 

Λ(𝑛): 
 

−
휁′(𝑠)

휁(𝑠)
= ∑

Λ(𝑛)

𝑛𝑠

∞

𝑛=1

 (54) 

 

휁′(0) = −
1

2
ln 2𝜋 (55) 

 

   

 

휁′(−2𝑛) = (−1)𝑛
휁(2𝑛 + 1)(2𝑛)!

22𝑛+1𝜋2𝑛
 (56) 

 

More formulae: 

 

1

휁(𝑠)
= ∑

𝜇(𝑛)

𝑛𝑠

∞

𝑛=1

 (with Moebius function 𝜇(𝑛))  (57) 

 

Here a representation using integrals: 

 

휁(𝑠) =
1

Γ(𝑠)
∫ 𝑥𝑠−1∑𝑒−𝑛𝑥𝑑𝑥 =

1

Γ(𝑠)
∫
𝑥𝑠−1

𝑒𝑥 − 1
𝑑𝑥

∞

𝑛=0

∞

𝑛=1

∞

0

 (58) 

 

Further representations with products (Hadamard product): 
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휁(𝑠) =
𝜋
𝑠
2

2(𝑠 − 1)Γ(1 +
𝑠
2)
∏(1 −

𝑠

𝜌
)

𝜌

 (59) 

 

Because of the conditional convergence of this formula (the evaluation of the product 

over the terms with the zeros of the zeta function ρ must be done in pairs), one can also 

write: 

 

휁(𝑠) =
𝜋
𝑠
2

2(𝑠 − 1)Γ(1 +
𝑠
2)

∏ (1 −
𝑠

𝜌
)

𝐼𝑚(𝜌)>0

(1 −
𝑠

1 − 𝜌
) (60) 

 

5.3 PRODUCT REPRESENTATION OF 휁(𝑠) IN THE COMPLEX DOMAIN 

Equation (53) describes the product representation of the zeta function. It also holds in 

the complex domain, but converges only for 𝑅𝑒(𝑠) > 1. For this reason, it is better to 

avoid using this formula in the region of the critical line in which the non-trivial zeros lie. 

What happens if we do the 'forbidden' anyway? Do we then cross a boundary beyond 

which the serious mathematician should not stray? Do we risk not being taken seriously? 

In the spirit of mathematical adventure, let us look and see what happens if we do the 

'forbidden' anyway: 

We use Formula (53) to calculate the values along the critical line: 

휁 (
1

2
+ 𝑡 ⋅ 𝑖) =∏

1

(1 − 𝑝−
1
2
−𝑡⋅𝑖)

 

∞

𝑝∈ℙ

 where 𝑡 ≥ 0 

The first thing to notice is that the term 
1

(… )
 in the infinite product can never be zero. 

Nevertheless, 휁 (
1

2
+ 𝑡 ⋅ 𝑖) has infinitely often the value 0 along the critical line. How can 

that happen? Let us look at the real part (black) and the imaginary part (red), as well as 

the zeros (blue circles) in the range from 2 to 70: 
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Figure 29. The zeta function (on crit. line, t=0-70, product formula with first 100 primes)  

Mathematica: 

cterm[n_,x_]:=1/(1-Prime[n]^(-1/2-x*I)); 

myFunc[x_]:=Product[cterm[n,x],{n,1,100}] 

xmax=70; 

Show[ListPlot[Table[{Im[ZetaZero[i]],0},{i,1,17}],PlotRange-

>{{0,71},{-3.5,5}},ImageSize-

>Large],Plot[{Im[myFunc[x]],Re[myFunc[x]]},{x,2,xmax},PlotStyle-

>{Red,Black},PlotRange->{{0,71},{-3.5,5}}, 

PlotLegends->{TraditionalForm[Im[Product[1/(1-Prime[n]^(-1/2-

x*I)),{n,1,N}]]],TraditionalForm[Re[Product[1/(1-Prime[n]^(-1/2-

x*I)),{n,1,N}]]]},ImageSize->Large]] 

 

 

Looking at the absolute value of this function, we see clearly that the values calculated 

with the product formula at the zeros (blue circles) of the zeta function have distinct 

minima, but never become exactly 0 (which is clear from the formula). Somehow, the 

infinitely many factors seem to work together in such a way that the infinite product at 

the zeros nevertheless approaches arbitrarily close to the value 0 if the product is taken 

over a sufficient number of factors. 
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Figure 30. The zeta function (abs. value,crit.  line, t=0-70, product formula with first 100 primes) 

Mathematica: 

cterm[n_,x_]:=1/(1-Prime[n]^(-1/2-x*I)); 

myFunc[x_]:=Product[cterm[n,x],{n,1,100}] xmax=70; 

Show[ListPlot[Table[{Im[ZetaZero[i]],0},{i,1,17}],PlotRange-

>{{0,71},{-0.1,5}}],Plot[Abs[myFunc[x]],{x,2,xmax},PlotStyle-

>Black],PlotRange->{{0,71},{-0.1,5}}] 

 

Here, by comparison, the 'exact' zeta function: 

 

Figure 31. The zeta function (real and imaginary parts, crit. line, t=0 -70, exact formula) 
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Mathematica: 

xmax=70; 

Show[ListPlot[Table[{Im[ZetaZero[i]],0},{i,1,17}],PlotRange-

>{{0,71},{-3.5,5}},ImageSize->Large], 

Plot[{Im[Zeta[1/2+x I]],Re[Zeta[1/2+x I]]},{x,2,xmax}, 

PlotStyle->{Red,Black},PlotRange->{{0,71},{-3.5,5}}, 

PlotLegends->"Expressions",ImageSize->Large]] 

 

 
Figure 32. The zeta function (abs. value, crit. line, t=0-70, exact formula) 

 

Comparison of the exact zeta function with the function calculated from the product 

formula 

From a phenomenological point of view, the following statements can be made without 

claiming to be exact or valid: for the sake of simplicity, let us call the zeta function 

calculated from the product formula the ‘P zeta function’. 

At first glance, the P zeta function looks like a somewhat 'broken' zeta function. It 

becomes ‘restless’, the more terms 𝑛𝑚𝑎𝑥 in the product formula are added. For small 

𝑛𝑚𝑎𝑥, it still looks quite ‘restrained’, however, it becomes more and more bizarre for 

large 𝑛𝑚𝑎𝑥, and resembles more and more the pathological ‘Weierstrass 𝔓 function’35, 

which is everywhere continuous, but nowhere differentiable, and is occasionally also 

referred to as a ‘monster function'. However, it can be observed that the P zeta function 

in the region of the zeros actually approaches 0 with increasing 𝑛𝑚𝑎𝑥. One could say 

that the P zeta function converges locally in the neighbourhood of the zeros, in which the 

convergence range 휀 for 𝑛𝑚𝑎𝑥 → ∞ is likely to approach 0. Whether the P zeta function 

actually diverges for all values is not certain. Compared to the exact zeta function, noise 

(increasingly) appears to be added as 𝑛𝑚𝑎𝑥 grows. The growth of the ‘noise and the 

 
35 https://de.wikipedia.org/wiki/Weierstraß-Funktion 
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‘restlessness’ of the P zeta function can be viewed in an animation (as a video on the 

attached CD) or as a mathematical animation (see the Appendix under “Riemann’s zeta 

function”). 

It is worth taking a closer look at the product term: 

∏
1

(1 − 𝑝−
1
2
−𝑡⋅𝑖)

 

∞

𝑝∈ℙ

 (61) 

 

By splitting up the real and imaginary part we get: 

∏
𝑝𝑛 −√𝑝𝑛 cos(𝑡 ⋅ ln(𝑝𝑛)) − 𝑖√𝑝𝑛sin (𝑡 ⋅ ln (𝑝𝑛))

−2√𝑝𝑛cos (𝑡 ⋅ ln (𝑝𝑛)) + 𝑝𝑛 + 1

∞

𝑛=1

  

Let us treat the product formation recursively: 

 𝑥𝑛+1 + 𝑖 𝑦𝑛+1 = (𝑥𝑛 + 𝑖 𝑦𝑛) ⋅ 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝑡𝑒𝑟𝑚(𝑛), then we get: 

𝑥𝑛+1 =
√𝑝𝑛(x𝑛(−cos (𝑡 ⋅ ln (𝑝𝑛))) + 𝑦𝑛sin (𝑡 ⋅ ln (𝑝𝑛)) + x𝑛√𝑝𝑛)

−2√𝑝𝑛cos (𝑡 ⋅ ln (𝑝𝑛)) + 𝑝𝑛 + 1
 

𝑦𝑛+1 =
√𝑝𝑛(−x𝑛sin (𝑡 ⋅ ln (𝑝𝑛)) + 𝑦𝑛(−cos (𝑡 ⋅ ln (𝑝𝑛))) + 𝑦𝑛√𝑝𝑛)

−2√𝑝𝑛cos (𝑡 ⋅ ln (𝑝𝑛)) + 𝑝𝑛 + 1
 

If we simply leave the cos terms in the numerator, we get an iteration that converges far 

faster (at least in the range of the zeros): 

 

𝑥𝑛+1 =

𝑥𝑛 +
y𝑛 sin(𝑡 ln(𝑝𝑛))

√𝑝𝑛

−
2cos (𝑡 ⋅ ln (𝑝𝑛))

√𝑝𝑛
+
1
𝑝𝑛
+ 1

 

𝑦𝑛+1 =

𝑦𝑛 −
x𝑛sin (𝑡 ⋅ ln (𝑝𝑛))

√𝑝𝑛

−
2cos (𝑡 ⋅ ln (𝑝𝑛))

√𝑝𝑛
+
1
𝑝𝑛
+ 1

 

 

(62) 

 

The absolute value of the function shows clear, absolute minima at the zeros, which are 

very close to 0: 
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Figure 33. Plot using Formula (62) where 𝑥0 = 1, 𝑦0 = 0, zeros: blue circles 

The corresponding Mathematica program can be found in the Appendix under 

“Riemann’s zeta function”. 

It is interesting that for the calculation of the position of the zeros of the zeta function (the 

position of the resulting absolute minima), an exact knowledge of all primes is not that 

important. Just taking the first five prime numbers (2,3,5,7,11) in Formula (62) gives the 

approximate position of the first 15 zero positions of the zeta function: 
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Figure 34. Zeta(s) calculated with (62) by using the first 5 prime numbers  

5.4 AN UNEXPECTED PRODUCT REPRESENTATION OF A SLIGHTLY 
DIFFERENT 휁(𝑠) 

Staying with (53),  let us be still more adventurous.  

What happens if (concerning the infinite product) we do not consider t as a variable and 

let the product run over all the primes, but consider p as a variable and let the product run 

over all the zeros of the zeta function? 

 

Well, instead of: 

휁 (
1

2
+ 𝑡 ⋅ 𝑖) =∏

1

(1 − 𝑝𝑛
−
1
2
−𝑡⋅𝑖)

 

∞

𝑛=1

 

ℨ(𝑝) =∏
1

(1 − 𝑝−
1
2
−𝜌𝑛⋅𝑖)

 where 𝜌𝑛: zeros of 

∞

𝑛=1

휁(𝑥), 𝑝 ∈ ℝ (63) 

Following the zeta function, we call this the Z function. 

Here are the results: 

Considering the absolute value of this function, we see clearly that the values calculated 

with the product formula have clear, absolute minima at the prime number positions 

(blue circles), but never become exactly 0 (which is clear from the formula). 
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Figure 35. Formula (63) (ABS(), x=10-100, product over 100 zeros of the zeta function)  

cterm[n_,p_]:=1/(1-p^(-ZetaZero[n])); 

myFunc[p_]:=Product[cterm[n,p],{n,1,100}] 

xmin=10;xmax=100; 

Show[ListPlot[Table[{Prime[i],0},{i,5,25}],PlotRange->{{xmin,xmax},{-

1,10}}],Plot[Abs[myFunc[x]],{x,2,xmax},PlotStyle->Black,PlotRange-

>{{xmin,xmax},{-5,10}},MaxRecursion->6]] 

 

It would be interesting to know the exact, explicit formula for 𝖅(𝒑)! 

The same holds for the convergence properties of ℨ(𝑝) as for the infinite product 

of Formula (61). Here also we have only 'local' convergence in the vicinity of the 

prime numbers. The more terms with zeta zeros are included in the product, the 

more the function becomes ‘restless’ and ‘noisy’. If we also use the same method 

of convergence acceleration according to (62), then we get: 

ℨ(𝑝) =∏
p−√𝑝 cos(𝑧𝑛 ⋅ ln(p)) − 𝑖√p ⋅ sin (𝑧𝑛 ⋅ ln (p))

−2√p ⋅ cos (𝑧𝑛 ⋅ ln (p)) + p + 1

∞

𝑛=1

  

 

𝑧𝑛 being here the imaginary parts of the zeta function zeros, and 𝑝 ∈ ℝ. 

If we consider the product computation recursively: 

 𝑥𝑛+1 + 𝑖 𝑦𝑛+1 = (𝑥𝑛 + 𝑖 𝑦𝑛) ⋅ product_term(𝑛), then we get: 

𝑥𝑛+1 =
√p(x𝑛(−cos (𝑧𝑛 ⋅ ln (p))) + 𝑦𝑛sin (𝑧𝑛 ⋅ ln(p)) + 𝑥𝑛√p)

−2√p ⋅ cos (𝑧𝑛 ⋅ ln (p)) + p + 1
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𝑦𝑛+1 =
√p(−x𝑛sin (𝑧𝑛 ⋅ ln (p)) + 𝑦𝑛(−cos (𝑧𝑛 ⋅ ln (p))) + 𝑦𝑛√p)

−2√p ⋅ cos (𝑧𝑛 ⋅ ln (p)) + p + 1
 

 

If we omit the cos terms in the numerator, then we again get the more quickly converging 

iteration formula: 

𝑥𝑛+1 =

𝑥𝑛 +
y𝑛 sin(𝑧𝑛 ln(p))

√p

−
2cos (𝑧𝑛 ⋅ ln (p))

√p
+
1
p + 1

 

𝑦𝑛+1 =

𝑦𝑛 −
x𝑛sin (𝑧𝑛 ⋅ ln (p))

√p

−
2cos (𝑧𝑛 ⋅ ln (p))

√p
+
1
p + 1

 

(64) 

 

The graph of this ‘convergence-accelerated’ function looks like this: 

 

Figure 36. Graph generated by (64) with absolute minima at primes, 𝑥0 = 1, 𝑦0 = 0 

The Mathematica program with which the graph was created can be found in the 

Appendix under “Riemann’s zeta function”. 
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5.5 A COUNTING FUNCTION FOR THE NUMBER OF ZEROS  

For the number of primes up to a given limit N, there are asymptotic and exact formulae, 

e.g. (133): 

𝝅(𝒙) = 𝑹(𝒙) −∑𝑹(𝒙𝝆)

𝝆

 

The sum runs over all non trivial zeros of the zeta function. We have the heuristic 

assumption that the number of non-trivial zeta zeros up to a given limit can be represented 

in a similar way by an infinite sum (this time over a prime number term). 

The known asymptotic approximation is: 

𝑵(𝒕) =
𝒕

𝟐𝝅
(𝐥𝐧

𝒕

𝟐𝝅
− 𝟏) (65) 

 

Here, first of all, is a graphic representation of the function 𝑁(𝑡) that indicates the number 

of zeros up to an upper limit 𝑡 (in comparison with the exact values): 

 

Figure 37. Number of zeros of the zeta function. Range 0-200, (exact and approximation) 

Mathematica: 

nn=200;temp=Table[0,{nn}];k=1;While[z=Im[ZetaZero[k]]; 

z<nn,k++;temp[[Ceiling[z];;nn]]++] 

NExact[t_]:=temp[[Round[t]]] 

NApprox[t_]:=t/(2*Pi)*(Log[t/(2Pi)]-1) 

Show[ListLinePlot[Table[NExact[x],{x,1,nn}],InterpolationOrder-

>0,ImageSize->Large],Plot[NApprox[x],{x,1,nn},PlotStyle-

>Black,ImageSize->Large]] 
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However, exact formulae can be also found in the literature (for derivation, see above): 

𝑁(𝑡) =
1

𝜋
 𝐼𝑚(ln(𝛤(

1

4
 +
𝑖𝑡 

2
)) −

𝑡

2𝜋
 ln(𝜋) +

1

𝜋
 𝐼𝑚(ln(휁(

1

2
 + 𝑖𝑡)) + 1 (66) 

 

Graph: 

 

Figure 38. Number of zeros of the zeta function. Range: 0-200 (Formula (66) and approximation) 

Mathematica: 

countZero[t_]:=1/Pi*Im[LogGamma[1/4+I*t/2]]-

t/(2*Pi)Log[Pi]+1/Pi*Im[Log[Zeta[1/2+I*t]]]+1 

NApprox[t_]:=t/(2*Pi)*(Log[t/(2Pi)]-1) 

Show[ListLinePlot[Table[NApprox[n],{n,1,200}], 

PlotRange->All],ListLinePlot[Table[countZero[n],{n,1,200}], 

InterpolationOrder->0, PlotRange->All]] 

 

Formula (66) seems to produce exactly the number of the zeros. (Verified by the author 

up to 100000). 

The duality between prime numbers and zeros of the zeta function is an essential theme 

of this book. Of course, there is a temptation to find a representation for the number of 

zeros, which consists of an approximation term (which describes the asymptotic 

development), and an additional sum term, which takes into account all the details and 

local nuances the more terms we include. 

Thus the duality between prime numbers and zeros of the zeta function would be perfect. 

We think, for example, of Formula (133) which gives the exact number of prime numbers: 
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𝝅(𝒙) = 𝑹(𝒙) −
𝟏

𝐥𝐧(𝒙)
+
𝟏

𝝅
𝐚𝐫𝐜𝐭𝐚𝐧 (

𝝅

𝐥𝐧(𝒙)
) +∑𝑹(𝒙𝝆)

𝝆

 

 

If we replace in (66) the zeta term by the product representation with prime numbers, then 

we have found such a formula: 

𝑵𝒄(𝒕) =
𝟏

𝝅
 𝐥𝐧 (𝜞 (

𝟏

𝟒
 +
𝒊𝒕 

𝟐
)) −

𝒊𝒕

𝟐𝝅
 𝐥 𝐧𝝅 −

𝟏

𝝅
∑𝐥𝐧(𝟏 − 𝒑𝒏

−
𝟏
𝟐
−𝒊𝒕)

𝒏

 

𝑵(𝒕) = 𝑰𝒎 𝑵𝒄(𝒕) 
 

(67) 

Here is a plot of this function from t = 0 to 60 (using the first 1000 primes for the sum 

term, the asymptotic part in blue): 

 

Figure 39. Zero-counting function of the zeta function with prime number sum term  

 

Mathematica: 

NApprox[t_]:=t/(2*Pi)*(Log[t/(2Pi)]-1)+1 

countZeroComplex[t_]:=1/Pi*LogGamma[1/4+I*t/2]-I*t/(2*Pi)Log[Pi]-

1/Pi*Sum[Log[1-Prime[n]^(-1/2-I*t)],{n,1,1000}]+I 

Show[ListLinePlot[Table[NApprox[n],{n,1,60}],PlotRange-

>All],Plot[Im[countZeroComplex[n]],{n,1,60},PlotStyle-

>Black,PlotRange->All]] 

  

Note: unfortunately, this representation does not converge absolutely. The amplitudes of 

the oscillations become bigger as more prime terms are added. 
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5.6 THE ZETA FUNCTION AND QUANTUM CHAOS: A GANGWAY TO 
PHYSICS 

Occasionally random coincidence lends a hand in mathematical discoveries. This was 

probably the case in the 70s of the last century. By chance the mathematician H. 

Montgomery and the physicist F. Dyson met and casually told each other about their 

current research projects – poring, one assumes, over the odd diagram or formula at the 

same time. 

Montgomery was a mathematician, specializing in number theory and the zeta function 

in particular, who had investigated the relationship between the complex zeros and prime 

numbers. Dyson was one of the leading nuclear physicists in the field of the so-called 

random matrices (a special mathematical field used in the treatment of the properties of 

large and heavy atomic nuclei). 

Perhaps Montgomery showed Dyson a diagram of the position of the zeros, because 

Dyson quickly realized that a striking similarity existed between the distribution of the 

zeros of the zeta function and certain physical spectra. Physically, these spectra describe 

energy levels in heavy atomic nuclei; mathematically, such spectra are calculated from 

the eigenvalues of so-called Gaussian random matrices (i.e. matrices occupied by random 

values corresponding to a Gaussian normal distribution). Expressed in the language of 

the physicists, this means that the spectral values are the 'eigenvalues' of a 'Hermitian' 

operator36 . Hermitian (also called ‘self-adjoint’) operators play an important role in 

quantum mechanics. Due to their symmetry properties, they always have real eigenvalues. 

Now, the conjecture is that the complex zeros of the zeta function are nothing other than 

the (real) eigenvalues of a mysterious Hermitian operator. This hypothesis is referred to 

in the literature as the 'GUE' hypothesis ('GUE': Gaussian Unitary Ensemble). 

Unfortunately this operator has not yet been found. There are, however, overwhelming 

numerical indications that such an operator does exist (see below). 

 

In fact, this conjecture goes much further back in time: the Hungarian mathematician 

George Pólya expressed this conjecture more than 100 years ago (Hilbert-Pólya 

conjecture). 37 

 

Consider the differences of the complex zeros occurring along the critical line and 

normalize these differences: 

 

𝛿𝑛 =
𝑧𝑛+1 − 𝑧𝑛
2𝜋

ln
𝑧𝑛
2𝜋

 

 

From the theory, we know for sure that these 𝛿𝑛 have the mean value of 

1. 

(68) 

 
36 https://de.wikipedia.org/wiki/Hermitescher_Operator 
37 https://en.wikipedia.org/wiki/Hilbert-Pólya_conjecture 

https://de.wikipedia.org/wiki/Hermitescher_Operator
https://en.wikipedia.org/wiki/Hilbert-Pólya_conjecture
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The smallest known value of 𝛿𝑛  is located at 1034741742903.353 (this is the 

4.088.664.936.217th zero) and has the normalized value of 0.00007025 . This 

corresponds to an actual difference of 0.00001709! (as of Jan. 2016). 

However, such small zero differences are very rare. In general, the zeros display a 

'repulsive' tendency and avoid coming too close to each other. This behaviour is also 

known by the energy levels of quantum mechanics. Here is a comparison of the statistical 

distribution from the prediction provided by the GUE theory (solid line) and the actual 

values of the zeros of the zeta function. For the calculation of the statistical distribution, 

2 billion zeros in the range up to 1013 have been evaluated. The graphic was taken from: 

http://numbers.computation.free.fr/Constants/Miscellaneous/zetazeroscompute.html 

Most of the results and calculations we owe to Andrew Odlyzko: 

http://www.dtc.umn.edu/~odlyzko/ 

As can be seen, the evidence that the zeros of the zeta function have their origin actually 

in a (still unknown) operator is obviously true. 

Further information about this current research area can be found at: 

http://www.dartmouth.edu/~chance/chance_news/recent_news/primes_part3/part3.html 

The pair correlation between two arbitrary zeros also appears to follow the theoretical 

prediction from the GUE theory: 

http://numbers.computation.free.fr/Constants/Miscellaneous/zetazeroscompute.html
http://www.dtc.umn.edu/~odlyzko/
http://www.dartmouth.edu/~chance/chance_news/recent_news/primes_part3/part3.html
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However there are still areas of darkness regarding the nature of this unknown operator. 

Investigations by Odlyzko (Fourier analysis of the critical zeros) show a somewhat 

different behaviour than is to be expected from physical GUE eigenvalues (e.g. peaks in 

prime number powers). Therefore the conjecture also exists that the underlying operator 

does not come from the eigenvalues of a GUE operator, but from the eigenvalues of a 

more general chaotic system. The interested reader is encouraged to search the Internet 

using the keywords "quantum chaology". 

A relatively unknown method uses connections between quantum oscillators and the zeta 

function. Without going into too much detail, the method of Crandall (Richard Crandall, 

2001) is described here: 

There is a temporal solution of a 'smooth' wave function 𝜓(𝑥, 𝑡), which is described by 

the Schrödinger equation and is known to have no zeros on the 𝑋 axis at time 𝑡 = 0. 

However, after a time 𝑡 in which the wave function evolves according to the Schrödinger 

equation, this wave function becomes 'noisy' and 'fuzzy' and acquires infinitely many 

zeros on the 𝑋 axis that are identical to the critical zeros of the zeta function. This wave 

function can be represented as follows: 

 

𝜓(𝑥, 𝑡) = 𝑓 (
1

2
+ 𝑖𝑥) 휁 (

1

2
+ 𝑖𝑥) = 𝑒

𝑥2

2𝑎2∑𝑐𝑛(−1)
𝑛𝐻2𝑛 (

𝑥

𝑎
)

∞

𝑛=0

 (69) 

 

Where 𝑎 is real and 𝑐𝑛 are constants still to be determined (depending on 𝑎). 𝐻𝑛 is the 

Hermitian polynomial of order 𝑛. Let 𝑓(𝑠) be an analytic function which has no zeros. If 

we restrict the infinite sum to a finite number of terms, we can use numerical methods to 

calculate the finite number of zeros. Borwein (Borwein, 2000) was able to use this method 

to calculate the first seven critical zeros of the zeta function with an accuracy of 10 

decimal digits using the first 27 sum terms. In principle, this method can be used to 

calculate all critical zeros. The calculation is based on the calculation of the eigenvalues 
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of a Hessenberg matrix, which ultimately leads to the calculation of the zeros of a 

characteristic polynomial. 

Here, further highly interesting contexts arise that are related to Riemann's conjecture. 
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6 DIGRESSION: THE RIEMANN FUNCTION 𝑅(𝑠) 

The Riemann function 𝑅(𝑥) (not to be confused with Riemann's zeta function 휁(𝑠)) plays 

an important role in the theory of prime numbers. It gives the best simple approximation 

for the calculation of 𝜋(𝑥), the number of primes up to the limit 𝑥. In the following, the 

most important properties and computational methods are briefly described. The most 

frequently used representations are the summation using the Moebius function 𝜇(𝑛) and 

the integral logarithm li(x),  
 

𝑅(𝑥) = ∑
𝜇(𝑛)

𝑛

∞

𝑛=1

li(x
1
𝑛) 𝑓𝑜𝑟 𝑥 > 1 (70) 

 

as well as the (very rapidly converging) summation by means of powers of ln (𝑥) and 

values of 휁(𝑛) with integral arguments 𝑛, which is generally referred to in the literature 

as the ‘Gram’ function or series: 

 

𝑅(𝑥) = 1 +∑
(ln 𝑥)𝑛

𝑛! 𝑛 휁(𝑛 + 1)
 𝑓𝑜𝑟 𝑥 > 0

∞

𝑛=1

 (71) 

 

The following plot shows how well the Riemann function 𝑅(𝑥) approximates to the 

function 𝜋(𝑥) (see also Table 29): 

 

 
Figure 40. r(x)−𝜋(x), values from x = 1 to 1000  
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7 A FEW IMPORTANT ARITHMETICAL FUNCTIONS  

7.1 OMEGA FUNCTIONS: NUMBER OF PRIME FACTORS 

𝜔(𝑛) denotes the number of different prime factors of a positive integer 𝑛. Thus, 𝜔(𝑛) is 

defined by the factorization of an integer as: 

 

𝑛 = 𝑝1
𝑒1𝑝2

𝑒2…𝑝𝜔(𝑛)
𝑒𝜔(𝑛) 

 

In contrast, Ω(𝑛) denotes the total number of prime factors of an integer 𝑛: 

Ω(𝑛) = ∑ 𝑒𝑖

𝑒𝜔(𝑛)

𝑘=1

 (72) 

 

Clearly, Ω(𝑛) is simply the sum of the prime powers of 𝑛. 

g 𝜔(𝑛) is defined by PrimeNu[n] and Ω(𝑛) by PrimeOmega[n]. 

Numbers that are composed only of different factors are identical to square-free numbers. 

The asymptotic behaviour of 𝜔(𝑛) is given by: 

𝜔(𝑛)~ ln ln 𝑛 + 𝐵1 +∑(−1 +∑
𝛾𝑗

𝑗!

𝑘−1

𝑗=0

)
(𝑘 − 1)!

(ln 𝑛)𝑘

∞

𝑘=1

  

where 𝐵1is the Mertens constant and 𝛾𝑗 are the Stieltjes constants. 



7 A few important arithmetical functions 

105 
 

 

Figure 41. Function 𝜔(n), number of different prime factors (red: asymptotic) 

Mathematica: 

mertensB1=0.2614972128; 

nmax=100000; 

Show[ListLogLinearPlot[Table[PrimeNu[n],{n,2,nmax}], 

PlotRange->All],ListLogLinearPlot[Table[Log[Log[n]]+mertensB1, 

{n,2,nmax}],PlotRange->All,Joined->True,PlotStyle->Red]] 

The asymptotic behaviour of Ω(𝑛) is also approximate: 

Ω(𝑛)~ ln ln 𝑛 + 𝐵2, with 𝐵2 = 0.494906  

 

Figure 42. Function Ω(n), total number of prime factors (red: asymptotic) 
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Mathematica: 

mertensB2=0.494906; 

nmax=100000; 

Show[ListLogLinearPlot[Table[PrimeOmega[n],{n,2,nmax}], 

PlotRange->All,Filling->Axis],ListLogLinearPlot[Table[Log[Log[n]]+ 

mertensB2,{n,2,nmax}],PlotRange->All,Joined->True,PlotStyle->Red]] 

 

Note:  

Ω(𝑛) is closely related to the Gradus Suavitatis of Leonhard Euler (see Chapter 15.1) 

 

The following relationships apply to other arithmetical functions: 

Liouville’s function:  

𝜆(𝑛) = (−1)Ω(n) 
 

Instead of calculating the number of all prime factors (Ω(𝑛))) or the number of different 

prime numbers 𝜔(𝑛) of the prime factor decomposition of a number, the sum of all prime 

factors, sopfr (n) (sum of all the different primes (s)) can be calculated. The former is also 

referred to as an integer log  

 

 
Figure 43. Integer logarithm: sum of all primes of the decomposition for n: sopfr(n)  

Mathematica: 

f[n_]:=Plus@@Times@@@FactorInteger@n;f[1]=0; 

ListLinePlot[Table[f[n],{n,1,500}],InterpolationOrder->0,PlotRange->All] 

7.2 THE LIOUVILLE FUNCTION 

The Liouville functions 𝜆 and 𝐿 are defined as: 

𝜆(𝑛) = (−1)Ω(n), 𝐿(𝑛) = ∑𝜆(𝑘)

𝑛

𝑘=1

 (73) 
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𝜆(𝑛) is −1, if n has an odd number of prime factors and +1 if n has an even number of 

prime factors.  

𝜆(𝑛) is closely related to Riemann’s 휁 function: 

 

휁(2𝑠)

휁(𝑠)
= ∑

𝜆(𝑘)

𝑘𝑠

∞

𝑘=1

 (74) 

 

𝐿(𝑛) is the summatory function of 𝜆(𝑛). 
For 𝐿(𝑛) exist the following formulae:38 

𝐿(𝑥) = ∑ 𝜇(𝑚) {⌊√
𝑥

𝑚
⌋ −∑𝜆(𝑘) (⌊

𝑥

𝑘𝑚
⌋ − ⌊

𝑥

𝑚𝜈
⌋)

𝜈−1

𝑘=1

} − ∑ 𝐿 (
𝑥

𝑙
) ∑ 𝜇(𝑚)

𝑥
𝑤

𝑚|𝑙
𝑚=1

𝑥
𝜈

𝑙=
𝑥
𝑤
−1

𝑥
𝑤

𝑚=1

 (75) 

 

The graph of 𝐿(𝑥) looks like this: 

 
Figure 44. Liouville lambda function, from 1 to 1000 

Mathematica: 

lTab=Accumulate[Join[{0},LiouvilleLambda[Range[1000]]]]; 

ListLinePlot[lTab] 

 

𝐿(𝑥) has a strong tendency to be negative. It was assumed until the 1950s that 𝐿(𝑥) ≤ 0 

is always true. In fact, however, the first counterexample was found in 1962:  

𝐿(906180359) = 1. The smallest counterexample is 𝐿(906150257). It is still unclear 

whether there are only finitely many counterexamples or infinitely many (as of Jan. 

2016). 

 
38 http://mathworld.wolfram.com/LiouvilleFunction.html 

http://mathworld.wolfram.com/LiouvilleFunction.html
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Like many arithmetical functions, 𝐿(𝑥) can also be approximated by means of a sum 

over the complex zeros of the zeta function (using the first 𝑁 zeros): 

 

𝐿(𝑥) = 1 +
√𝑥

휁 (
1
2)
+ 2Re(∑

𝑥𝜌𝑘휁(2𝜌𝑘)

𝜌𝑘휁′(𝜌𝑘)

𝑁

𝑘=1

) (76) 

 

Mathematica program: please contact the author. 

 

 
Figure 45. Liouville function, from 1 to 100: exact and computed analytically  

7.3 THE CHEBYSHEV FUNCTION 

 

The summatory function of the Mangoldt function Λ(𝑛) is called Chebyshev function of 

the 2nd kind (psi function): 

 

 𝜓(𝑥) =  ∑ ln(𝑝) =  ∑Λ(𝑛)

𝑛≤𝑥𝑝𝑘≤𝑥

 

  
Mathematica: 

ListLinePlot[Table[{n,Sum[MangoldtLambda[k],{k,1,n}]},{n,1,100}],Inter

polationOrder->0] 
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Figure 46. Chebyshev psi function, going from 0 to 100 

The Chebyshev psi function can be represented analytically as an explicit function: 

𝝍𝟎(𝒙) = 𝒙 −∑
𝒙𝝆

𝝆
− 

𝝆

𝐥𝐧(𝟐𝝅) −
𝟏

𝟐
𝐥𝐧(𝟏 − 𝒙−𝟐) (77) 

The summation runs over the non-trivial zeros of the zeta function (here, over the first 50 

zero pairs). 

Mathematica: 

myPsi (x_, y_):= −∑If[𝑖 ≠ 0,
(𝑥 + 𝑖𝑦)𝜌𝑖

𝜌𝑖
, 0]

50

𝑖=−50

− 0.5log (1 −
1

𝑥2
) + 𝑥 − log (2𝜋) 

Plot[Re[myPsi[x,0]],{x,1,100}] (*real part*) 
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Figure 47. Chebyshev psi function, computed analytically, plot from 0 to 100  

Both functions in comparison (sum over the first 75 zero pairs): 

Mathematica program: please contact the author. 

Show[Plot[Re[myPsi[x, 0]], {x, 1, 100},PlotPoints->400, 

PlotStyle->Red], ListLinePlot[Table[{n, Sum[MangoldtLambda[k], {k, 1, 

n}]},{n, 1, 100}], InterpolationOrder->0]] 

 

 
Figure 48. Chebyshev psi function; comparison of analytic and arithmetical method s of calculation 
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7.4 THE EULER PHI FUNCTION (TOTIENT FUNCTION) 

The Euler phi function 𝝋(𝒏) (totient function) indicates how many numbers exist that are 

coprime to 𝑛 and less than or equal to 𝒏. 

Definition of 𝝋(𝒏): 

𝝋(𝒏) = |{𝒌 ∈ ℕ|𝟏 ≤ 𝒌 ≤ 𝒏 ∧ 𝒈𝒈𝑻(𝒌,𝒏) = 𝟏}| (78) 
 

7.4.1 CALCULATION AND GRAPHIC REPRESENTATION OF THE PHI FUNCTION 

Mathematica: 

ListLinePlot[Table[{n,EulerPhi[n]},{n,1,100}],InterpolationOrder->0] 

 
Figure 49. Euler phi function, depicted from 1 to 100 

Calculation of 𝝋(𝒏) 
(Let 𝑎𝑖 be the powers of the prime decomposition of 𝑛 = ∏ 𝑝𝑖

𝑎𝑖𝑟
𝑖=1 ) 

 

𝝋(𝒏) =∏𝒑𝒂𝒊−𝟏(𝒑 − 𝟏) = 𝒏

𝒑|𝒏

∏(𝟏−
𝟏

𝒑
)

𝒑|𝒏

 (79) 

 

𝝋(𝒏) = 𝒏 𝐥𝐢𝐦
𝒔→𝟏

𝜻(𝒔)∑𝝁(𝒅)(𝒆
𝟏
𝒅)(𝒔−𝟏)

𝒅|𝒏

 

 

(80) 

Its summatory function 𝚽(𝒏) calculates the sum up to 𝑛: 

 

𝚽(𝒏) = ∑𝝋(𝒏)

𝒏

𝒌=𝟏

 
(81) 
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Mathematica: 

PhiSum[n_]:=Sum[EulerPhi[k],{k,1,n}] 

 

 

Applying Perron’s formula, we get an analytic expression for 𝜙(𝑥): 
 

𝚽(𝒙)~
𝟏

𝟔
+
𝟑𝒙𝟐

𝝅𝟐
+𝑹𝒆(∑

𝒙𝝆𝒌𝜻(𝝆𝒌 − 𝟏)

𝝆𝒌𝜻′(𝝆𝒌)

𝑵

𝒌=𝟏

)+∑
𝒙−𝟐𝒌𝜻(−𝟐𝒌− 𝟏)

(−𝟐𝒌)𝜻′(−𝟐𝒌)

𝑵

𝒌=𝟏

 

 

(82) 

Mathematica program: please contact the author. 

 

More useful Mathematica commands: 

DirichletTransform[EulerPhi[n],n,s] 

 

Comparison of the analytic Φ(𝑛) with the arithmetical version of the function Φ(𝑥) (the 

sum taken over the first 50 non trivial and 50 trivial zeros): 

 

 
Figure 50. Summatory function Φ(n) of the phi function, plotted from 1 to 100 (comparison of the 
arithmetical and analytic method of calculation)  

Mathematica: 

Show[Plot[myPhi[x],{x,1,20},MaxRecursion->2,PlotPoints->150], 

ListLinePlot[Table[{n,PhiSum[n]},{n,1,40}],InterpolationOrder->0]] 

 

The analytic version 𝜑(𝑥) of 𝜑(𝑛) denotes: 

𝝋(𝒙) = 𝚽(𝐱) −𝚽(𝐱 − 𝟏) (83) 
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Comparison of the analytic 𝜑(𝑥) with the arithmetical function 𝜑(𝑛) (with sums over the 

first 50 non trivial and 50 trivial zeros): 

 

Figure 51. Euler phi function (comparison analytical and arithmetical calculation) 

 

Mathematica: 

myEulerPhi[x_]:=myPhi[x]-myPhi[x-1] (*definition see above *) 

Show[Plot[myEulerPhi[x],{x,1,20},MaxRecursion->2, 

PlotPoints->150],ListLinePlot[Table[{n,EulerPhi[n]},{n,1,40}], 

InterpolationOrder->0] ] 

 

7.4.2 PROPERTIES OF THE PHI FUNCTION 

Properties of 𝝋(𝒏): 

𝜑(𝑚𝑛) = 𝜑(𝑚)𝜑(𝑛) (if gcd(𝑚, 𝑛) = 1) 

𝜑(𝑝) = 𝑝 − 1 (if p is a prime number) 

𝜑(𝑝𝑘) = 𝑝𝑘−1(𝑝 − 1) = 𝑝𝑘(1 −
1

𝑝
) (powers of prime numbers) 

𝜑(𝑛) =
2

𝑛
∑ 𝑗

1≤𝑗≤𝑛−1

𝑔𝑔𝑇(𝑛,𝑗)=1

 

𝒈𝒄𝒅(𝒂,𝒎) = 𝟏 ⇒ 𝒂𝝋(𝒏) ≡ 𝟏(𝐦𝐨𝐝 𝒎) (theorem of Fermat-Euler) 
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𝒑 ∤ 𝒂 ⇒ 𝒂𝒑−𝟏 ≡ 𝟏(𝐦𝐨𝐝 𝒑) (special case for prime numbers, ‘little Fermat 

theorem’) 

𝜑(𝑚𝑛) = 𝜑(𝑚)𝜑(𝑛)
𝑑

𝜑(𝑑)
, where 𝑑 = 𝑔𝑐𝑑(𝑚, 𝑛)  

𝜑(𝑛𝑚) = 𝑛𝑚−1𝜑(𝑛)  

𝝋(𝒏)𝝈𝟎(𝒏) = ∑ 𝐠𝐠𝐓(𝒌 − 𝟏, 𝒏)
𝟏≤𝒌≤𝟏

𝒈𝒈𝑻(𝒌,𝒏)=𝟏

 (84) 

 

∑
𝝋(𝒏)

𝒏𝒔

∞

𝒏=𝟏

=
𝜻(𝒔 − 𝟏)

𝜻(𝒔)
 

(85) 

 

The Euler 𝜑 function has been generalized by Ramanujan (𝜑1(𝑛) = 𝜑(𝑛)): 

 

𝝋𝒔(𝒏) = 𝒏
𝒔∏(𝟏−

𝟏

𝒑𝒔
)

𝒑|𝒏

 (86) 

Ramanujan determined 𝜑𝑠(𝑛) to be: 

𝝋𝒔(𝒏) =
𝝁(𝒏)𝒏𝒔

𝜻(𝒔)∑
𝝁(𝒏𝒌)
𝒌𝒔

∞
𝒌=𝟏

  (87) 

 

𝝋(𝒏) =
𝝁(𝒏)𝒏

𝜻(𝒔)∑
𝝁(𝒏𝒌)
𝒌

∞
𝒌=𝟏

 (88) 

𝜑(𝑛) can also be calculated with a Ramanujan expansion: 

𝝋(𝒏) =
𝒏

𝜻(𝒔 + 𝟏)
∑
𝝁(𝒒)𝒄𝒒(𝒏)

𝝋𝟐(𝒒)

∞

𝒒=𝟏

 

This formula is, however, not practicable, because for the computation of 𝜑(𝑛), one also 

needs 𝜑2(𝑘) (𝑘 = 1…  ∞). 
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7.5 THE SUM-OF-DIVISORS FUNCTION (SIGMA FUNCTION) 

7.5.1 DEFINITION, PROPERTIES 

The sum-of-divisors function 𝝈𝒌(𝒏) gives the sum of the 𝑘th powers of the positive 

divisors of 𝑛 (including 𝑛). 

Definition of 𝝈𝒌(𝒏): 

𝝈𝒌(𝒏) =∑𝒅𝒌

𝒅|𝒏

 (89) 

 

Calculation of 𝝈𝒌(𝒏):  

(let 𝑎𝑖 be the powers of the prime factor decomposition of 𝑛 = ∏ 𝑝𝑖
𝑎𝑖𝑟

𝑖=1 ) 

𝝈𝒌(𝒏) =∏
𝒑𝒊
(𝒂𝒊+𝟏)𝒌 − 𝟏

𝒑𝒊
𝒌 − 𝟏

𝒓

𝒊=𝟏

=∏∑𝒑𝒊
𝒋𝒌

𝒂𝒊

𝒋=𝟎

𝒓

𝒊=𝟏

 (90) 

 

If 𝜎1(𝑛) is a prime number, so also is 𝜎0(𝑛). Here are the first 23 pairs: 

(2,3) (3,7) (3,13) (5,31) (3,31) (7,127) (3,307) (7,1093) 

(3,1723) (5,2801) (3,3541) (13,8191) (3,5113) (3,8011) 

(3,10303) (7,19531) (3,17293) (3,28057) (5,30941) (3,30103) 

(17,131071) (5,88741) (3,86143) 

Mathematica: 

For [i=1,i<100000,i++,If[PrimeQ[DivisorSigma[0,i]]==True&& 

OddQ[DivisorSigma[0,i]],Print[DivisorSigma[0,i],",", 

FactorInteger[DivisorSigma[1,i]]]]] 

 

Odd prime values of 𝜎0(𝑛) are rare. Among the first 100000,  79 values (in ascending 

order) can be found: 
{3,3,5,3,3,7,5,3,3,3,3,3,5,7,3,3,11,3,3,3,3,5,3,3,3,13,3,3,

3,3,3,3,3,3,3,3,3,3,5,7,3,3,3,3,3,3,3,3,3,5,3,3,3,3,3,3,3,3

,3,3,3,3,3,3,11,3,17,3,3,3,3,3,3,3,5,3,3,3,3} 

 

Mathematica: 

Select[Select[DivisorSigma[0,Range[100000]],OddQ],PrimeQ] 
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Here are a few plots of 𝜎𝑘(𝑛) for different values of 𝑘: 

Mathematica: 

k=0;ListLinePlot[Table[{n,DivisorSigma[k,n]},{n,1,50}], 

InterpolationOrder->0] 

 

 
Figure 52. Number of divisors function  𝜎0(n), plotted from 0 to 50 

Mathematica: 

k=1;ListLinePlot[Table[{n,DivisorSigma[k,n]},{n,1,100}], 

InterpolationOrder->0] 

The first 100 values of 𝜎0(𝑛) read: 
{1,2,2,3,2,4,2,4,3,4,2,6,2,4,4,5,2,6,2,6,4,4,2,8,3,4,4,6,2,

8,2,6,4,4,4,9,2,4,4,8,2,8,2,6,6,4,2,10,3,6,4,6,2,8,4,8,4,4,

2,12,2,4,6,7,4,8,2,6,4,8,2,12,2,4,6,6,4,8,2,10,5,4,2,12,4,4

,4,8,2,12,4,6,4,4,4,12,2,6,6,9} 

 

The first 100 values of 𝜎1(𝑛) read: 
{1,3,4,7,6,12,8,15,13,18,12,28,14,24,24,31,18,39,20,42,32,3

6,24,60,31,42,40,56,30,72,32,63,48,54,48,91,38,60,56,90,42,

96,44,84,78,72,48,124,57,93,72,98,54,120,72,120,80,90,60,16

8,62,96,104,127,84,144,68,126,96,144,72,195,74,114,124,140,

96,168,80,186,121,126,84,224,108,132,120,180,90,234,112,168

,128,144,120,252,98,171,156,217} 

 

Prime values of 𝜎1(𝑛) are rare, the first 37 values (ascending) in the range up to 1m read: 
{3,7,13,31,31,127,307,1093,1723,2801,3541,8191,5113,8011,10

303,19531,17293,28057,30941,30103,131071,88741,86143,147073

,524287,292561,459007,492103,797161,552793,579883,598303,68

4757,704761,732541,735307,830833} 
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Figure 53. Sum of divisors function  𝜎1(n), plotted from 0 to 100 

 

The sigma function can be expanded in a Ramanujan series with the Ramanujan sums 

𝑐𝑞(𝑛) as coefficients (note that 𝑠 and 𝑛 need not to be integers): 

𝝈𝒔(𝒏) = 𝒏
𝒔𝜻(𝒔 + 𝟏)∑

𝒄𝒒(𝒏)

𝒒𝒔+𝟏

∞

𝒒=𝟏

 (91) 

as well as: 

𝝈𝟎(𝒏) = −∑
𝒍𝒏(𝒒)

𝒒

∞

𝒒=𝟏

𝒄𝒒(𝒏) (92) 

 

As shown in Chapter 7.9.3, it is possible to extend the Ramanujan sums 𝑐𝑞(𝑛) to real or 

complex values. Instead of (91) we get a ‘Ramanujan sum function’ 

 

𝝈𝒔(𝒙) = 𝒙
𝒔𝜻(𝒔 + 𝟏)∑

𝒄𝒒(𝒙)

𝒒𝒔+𝟏

∞

𝒒=𝟏

 (93) 

 

whose two real and imaginary parts oscillate fairly quickly. This complex function is a 

wonderful extension of the Ramanujan sums defined only for integer values to ℝ bzw. ℂ. 

We can see this clearly when we look at the absolute value of this function: it can be 

clearly seen that function values at integer arguments are exactly the same as for the 
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arithmetical version. It would be interesting to take a closer look at the information hidden 

in the ‘phase’ of this function. It looks as if the phase 'rotates', sometimes faster, 

sometimes more slowly (see Figure 55). 

Asymptotic behaviour of 𝝈𝒌(𝒏) 

𝝈𝟏(𝒏) < 𝒆
𝜸𝒏 𝐥𝐧(𝐥𝐧(𝒏)) +

𝟎. 𝟔𝟒𝟖𝟑

𝐥𝐧(𝐥𝐧(𝒏))
, 𝒏 > 𝟑 

Properties of 𝝈𝒌(𝒏) 

𝜎0(𝑝) = 2 (Each prime number has only two divisors: itself and the 1) 

𝜎0(𝑝
𝑛) = 𝑛 + 1  

𝜎0(𝑛) = ∏ (𝑎𝑖 + 1)
𝑟
𝑖=1   (𝑎𝑖 see Formula (90)) 

𝜎1(𝑝) = 𝑝 + 1  

There are infinitely many 𝑛 such that 𝜎0(𝑛) = 𝜎0(𝑛 + 1) 
 

Conjectures: 

The only integer number n for which 𝝈𝟐(𝒏) is prime is 𝟐,𝐰𝐡𝐞𝐫𝐞 𝝈𝟐(𝟐) = 𝟓. 

7.5.2 GRAPHIC REPRESENTATIONS OF THE SIGMA FUNCTION 

Here are a few graphs in which the values of 𝜎(𝑛) (calculated analytically with the 

Ramanujan series in red, exact values from number theory in blue), are compared. It can 

be seen that the red curve is exactly the same as the arithmetical value for integer values. 

Mathematica code for the following illustration:  

 

cnqx[q_,n_]:= Sum[If[GCD[a,q]==1,Exp[2.0*Pi*I*a*(n/q)],0],{a,1,q}]; 

s=1.0; 

Show[Plot[n^s*Zeta[s+1]*Abs[Sum[cnqx[q,n]/q^(s+1),{q,1,1000}]], 

{n,1,12},PlotStyle->Red],ListLinePlot[Table[{k,DivisorSigma[s,k]}, 

{k,1,12}],InterpolationOrder->0]] 
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Figure 54. |𝜎1(𝑥)|:  comparison of the sigma values calculated analytically with the exact values. 
Ramanujan sums 𝑐𝑞(n) up to q=1000 have been evaluated, n = 0 to 12 

Mathematica code for the following illustration: 

cnqx[q_,n_]:=Sum[If[GCD[a,q]==1,Exp[2.0*Pi*I*a*(n/q)],0],{a,1,q}]; 

s=1.0; 

Show[Plot[Arg[Sum[cnqx[q,n]/q^(s+1),{q,1,100}]],{n,1,12}, 

PlotStyle->Red],ListLinePlot[Table[{k,DivisorSigma[s,k]}, 

{k,1,12}],InterpolationOrder->0]] 

 
Figure 55. arg(𝜎1(𝑥)): argument of the extended sigma function. Ramanujan sums  𝑐𝑞(n) up to 

q=100 have been evaluated, n goes from 0 to 12. The graph in blue has been rescaled.  
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Mathematica code for the following illustration: 

cnqx[q_,n_]:= Sum[If[GCD[a,q]==1,Exp[2.0*Pi*I*a*(n/q)],0],{a,1,q}]; 

s=1.0; 

Plot[n^s*Zeta[s+1]*Abs[Sum[cnqx[q,n]/q^(s+1),{q,1,50}]],{n,1,5000}, 

MaxRecursion->2,PlotPoints->3000] 

 
Figure 56. |𝜎1(x)|: values of sigma, calculated analytically. Ramanujan sums  𝑐𝑞(n) up to q=50 have 

been evaluated 

 

Mathematica code for the following illustration: 

Show[Monitor[Plot[n^s*Zeta[s+1]*Abs[Sum[cnqx[q,n]/q^(s+1),{q,1,1000}]]

,{n,100,150},PlotStyle-

>Red],n],ListLinePlot[Table[{k,DivisorSigma[s,k]},{k,100,150}],Interpo

lationOrder->0]] 
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Figure 57. |𝜎1(𝑥)): comparison of the sigma values calculated analytically with the exact values. 
Ramanujan sums  𝑐𝑞(n) up to q=1000 have been evaluated, n goes from 100 to 150 

 Mathematica code for the following illustration: 
Show[Plot[n^s*Zeta[s+1]*Abs[Sum[cnqx[q,n]/q^(s+1),{q,1,3000}]]-n-

1,{n,1000000000,1000000100},PlotStyle->Red],ListLinePlot[ 

Table[{k,DivisorSigma[s,k]-k-

1},{k,1000000000,1000000100}],InterpolationOrder->0]] 

 

Figure 58. |𝜎1(x) |-x-1: comparison of the sigma values calculated analytically with the exact 
values. Zeros are at prime number positions 

 



The Ramanujan tau function  

122 
 

More formulae concerning the sigma function: 

𝜎𝑘(𝑛) = ∑ 𝑚𝑘−1∑cos(
2𝜋𝑗𝑛

𝑚
)

𝑚

𝑗=1

𝑛

𝑚=1

 (94) 

Mathematica: 

myDivisorSigma[k_,n_]:=Sum[m^(k-1) 

Sum[Cos[(2 Pi j n)/m],{j,1,m}],{m,1,n}] 

 

Graph following Formula (94): 

 
Figure 59. The sigma function calculated analytically us ing Cos() terms 

Mathematica: 

myDivisorSigma[k_,n_]:=Sum[m^(k-1) Sum[Cos[(2 pi j 

n)/m],{j,1,m}],{m,1,n}] 

xmin=0; xmax=20; 

Show[Plot[N[myDivisorSigma[1,x]],{x,xmin,xmax}, 

PlotRange->All,AxesOrigin-{0,0}],ListPlot[Table[{n,DivisorSigma[1,n]}, 

{n,xmin,xmax}],PlotStyle->Red]] 

 

𝜎0(𝑛) = ∑(−1)𝑚+1(2𝜋𝑛)2𝑚∑
(−1)𝑗22𝑗−1𝜋2𝑗(𝐵2𝑗)

2

((2𝑗)!)2(−2𝑗 + 2𝑚 + 1)!

𝑚

𝑗=1

∞

𝑚=1

 (95) 

 

Mathematica: 

myDivisorSigma0[n_] == Sum[(-1)^(m + 1) (2 Pi n)^(2 m)  

Sum[((-1)^j (2 Pi)^(2 j) BernoulliB[2 j]^2)/(2 (2 j)!^2 (2 m + 1 - 2 

j)!), {j, 1, m}], {m, 1, Infinity}] 

 

7.6 THE RAMANUJAN TAU FUNCTION 

In the mathematical literature four different Ramanujan tau functions can be found (the 

arguments indicate to the most frequently used number field, 𝑛: integer, 𝑠: complex, 𝑡: 
real). 
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𝜏(𝑛): Ramanujan tau function, Mathematica: RamanujanTau[n] 

𝐿(𝑠): Ramanujan tau Dirichlet L function, Mathematica: RamanujanTauL[s] 

𝑍(𝑡): Ramanujan tau Z function, Mathematica: RamanujanTauZ[n] 

Θ(𝑡): Ramanujan tau theta function, Mathematica: RamanujanTauTheta[n] 

The graph of 𝜏(𝑛) looks like:  

 

Figure 60. Ramanujan  𝜏(N) (gray), in red: only 𝑛 for 𝑀𝑜𝑑(𝑛, 112) = 0 

Mathematica: 

Show[ListLogPlot[Table[{n,Abs[RamanujanTau[n]]},{n,1,10000}],Joined-

>True,PlotRange->{10^10,10^24},PlotStyle->Gray], 

ListLogPlot[Table[{n,Abs[RamanujanTau[n]]},{n,121,10000,121}],Joined-

>True,PlotRange->{10^10,10^24},PlotStyle->Red,InterpolationOrder->1]] 

 

The Ramanujan tau function has many representations (or definitions): 

By its generating function 39 𝑮(𝒙) 
 

𝐺(𝑥) = 𝑥∏(1 − 𝑥𝑛)24
∞

𝑛=1

=∑ 𝜏(𝑛)𝑥𝑛
∞

𝑛=1

= 𝑥 − 24𝑥2 + 252𝑥3 − 1472𝑥4 + 4830𝑥5

− 6048𝑥6 +⋯ = 𝑥(1 − 3𝑥 + 5𝑥3 − 7𝑥6 +⋯)8 

(96) 

 
(*Mathematica (the first 50 values):*) 

CoefficientList[Take[Expand[Product[(1-x^k)^24,{k,1,50}]],50],x]: 

 
39 A sequence a(n) can be defined by the coefficients of a power series expansion 𝑓(𝑥) = ∑ 𝑎𝑛𝑥

𝑛∞
𝑛=0 . 

𝑓(𝑥) is called the ‘generating function’ of 𝑎(𝑛) 



The Ramanujan tau function  

124 
 

{1,-24,252,-1472,4830,-6048,-16744,84480,-113643,-115920,…} 

 

(*From theory of modular forms:*) 

max = 28; g[k_] := -BernoulliB[k]/(2k) + Sum[ DivisorSigma[k - 1, n - 

1]*q^(n - 1), {n, 2, max + 1}]; CoefficientList[ Series[ 8000*g[4]^3 - 

147*g[6]^2, {q, 0, max}], q] // Rest 

 

Properties of 𝝉(𝒏) 
 

𝜏(𝑝𝑟+1) = 𝜏(𝑝)𝜏(𝑝𝑟) − 𝑝11𝜏(𝑝𝑟−1), if 𝑝 ∈ ℙ 𝑎𝑛𝑑 𝑟 > 0 (97) 

 

|𝜏(𝑝)| ≤ 2𝑝
11
2 , if 𝑝 ∈ ℙ (98) 

 

𝜏(𝑛) is a multiplicative function: 𝜏(𝑚𝑛) = 𝜏(𝑚)𝜏(𝑛), if gcd(𝑚, 𝑛) = 1 

 

There are very many relationships between τ (n) and the sum-of-divisors functions 

𝜎𝑘(𝑛).
40 

Here an example:  

 

𝜏(𝑛) =
65

756
𝜎11(𝑛) +

691

756
𝜎5(𝑛) −

691

3
∑𝜎5(𝑘)𝜎5(𝑛 − 𝑘)

𝑛−1

𝑘=1

 (99) 

 

Ramanujan discovered the following recursive identities: 

 

(𝑛 − 1)𝜏(𝑛) = ∑(−1)𝑚+1(2𝑚

𝑏𝑛

𝑚=1

+ 1)

× (𝑛 − 1 −
9

2
𝑚(𝑚 + 1)) 𝜏 (𝑛

−
1

2
𝑚(𝑚 + 1)) ,where 𝑏𝑛 =

1

2
(√8𝑛 + 1 − 1) 

 

(100) 

 

𝜏(𝑝𝑛) =∑(−1)𝑗 (
𝑛 − 𝑗
𝑛 − 2𝑗

)

⌊
𝑛
2
⌋

𝑗=0

𝑝11𝑗(𝜏(𝑝))
𝑛−2𝑗

 (101) 

 

 

The Ramanujan tau L, tau theta and tau Z functions 

 

𝑍(𝑡) = 𝑒𝑖𝜃(𝑡) 𝐿(𝑖𝑡 + 6) (102) 

  

 
40 https://en.wikipedia.org/wiki/Ramanujan_Tau_function or: 
http://mathworld.wolfram.com/TauFunction.html 

https://en.wikipedia.org/wiki/Ramanujan_tau_function
http://mathworld.wolfram.com/TauFunction.html
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Alternatively (similar to the decomposition of the zeta function by 

means of the Riemann-Siegel function):  

 

𝐿(𝑖𝑡 + 6) = 𝑒−𝑖𝜃(𝑡)𝑍(𝑡) 
 

 

𝑳(𝒔) = ∑
𝝉(𝒏)

𝒏𝒔

∞

𝒏=𝟏

 (103) 

 

where 휃(𝑡) is the Ramanujan tau theta function and 𝐿(𝑠) the Ramanujan tau L function. 

The function 𝐿(𝑠) is also known as ‘Ramanujan's Dirichlet L series’. It has similar 

properties to those of Riemann's zeta function 휁(𝑧). In fact, it belongs to the type of 

generalized zeta functions. Ramanujan conjectured that all non-trivial zeros of 𝐿(𝑠) lie 

on the 'critical' line 𝑅𝑒[𝑠] = 6. 

Similar to the zeta function, 𝐿(𝑠) also has an Euler product representation: 

 

𝑳(𝒔) =∏
𝟏

𝟏 − 𝝉(𝒑)𝒑−𝒔 + 𝒑𝟏𝟏−𝟐𝒔

∞

𝒑𝝐ℙ

 

 

(104) 

More formulae and identities can be found on the Internet.41 

Graphic illustrations (black: real part, red: imaginary part): 

 

 
Figure 61. Ramanujan tau L function (Dirichlet-L-series) 0-70, having 34 zeros along the critical 
line 

Mathematica: 

Show[Plot[{Im[RamanujanTauL[6+x I]],Re[RamanujanTauL[6+x 

I]]},{x,0,xmax},PlotStyle->{Red,Black},PlotLegends-

>"Expressions",PlotRange->{{0,70},{-3.,4}},ImageSize->Large]] 

 

 
41 http://mathworld.wolfram.com/TauDirichletSeries.html 

http://mathworld.wolfram.com/TauDirichletSeries.html
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The density of the zeros of the Ramanujan tau L function 𝐿(𝑠) is about twice that of the 

zeta function 휁(𝑠). In the range up to 70, the 휁 function 17 has zeros, while the tau L 

function has 34 zeros. 

A table with the first zeros of Ramanujan's tau L function is given in the Appendix 

‘Zeros of Ramanujan’s tau L function’. 

7.7 THE MERTENS FUNCTION 

The Mertens function 𝑀(𝑛) is the summatory function of the Moebius function 𝜇(𝑛): 

 

𝑀(𝑛) = ∑𝜇(𝑘)

𝑛

𝑘=1

 (105) 

 

Definition of 𝜇(𝑛) (for 𝑛 > 0): 

𝜇(𝑛) = {

1, if 𝑛 square − free and having an even number of prime factors
−1, if 𝑛 square − free and having an odd number of prime factors

0, if 𝑛 has a square prime factor 
}  

 

𝜇(𝑛)  can be calculated without knowledge of the prime factor decomposition of 𝑛 

(however with the same complexity): 

𝜇(𝑛) = ∑ 𝑒−2𝜋𝑖
𝑘
𝑛

1≤𝑘≤𝑛
gcd(𝑘,𝑛)=1

 
(106) 

 

Properties of the 𝜇 function: 

∑
𝜇(𝑘)

𝑘

∞

𝑘=1

= 0 (107) 

 

Also interesting is the representation as a sum over Farey sequences: 

𝑀(𝑛) = ∑ 𝑒−2𝜋𝑖𝑎

𝑎∈ℱ𝑛

 (108) 

 

Representation of the Moebius function: 
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Figure 62. Moebius function  𝜇(n), from 1 to 100 

Mathematica: 

DiscretePlot[MoebiusMu[k],{k,100}] 

Note: the Moebius function 𝜇(𝑛) is also defined for negative 𝑛 or whole complex 

numbers. 

Formulae 

𝜇(𝑛) is closely related to the Riemann zeta function:  

∑
𝜇(𝑛)

𝑛𝑠

∞

𝑛=1

=
1

휁(𝑠)
 

 

(109) 

Graph of the Mertens function: 

 

Figure 63. Mertens function M(n) from 1 to 400 
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Mathematica: 

m[n_]:=Sum[MoebiusMu[k],{k,1,n}] 

ListLinePlot[Table[m[n],{n,400}],InterpolationOrder->0, 

PlotStyle->Black] 

 

The Mertens function has zeros at: 

2,39,40,58,65,93,101,145,149,150,159,160,163,164,166,214,231,232,235, 

236,238,254,329,331,332,333,353,355,356,358,362,363,364,366,393… 

There is also a recursive representation of the Mertens function (here calculated using the 

following Mathematica program): 

Mathematica: 

(*Conjectured recurrence (two combined recurrences):*) 

t[n_,k_]:=t[n,k]=If[And[n==1,k==1],3,If[Or[And[n==1,k==2],And[n==2,k==

1]],2,If[n==1,(-t[n,k-1]-Sum[t[i,k],{i,2,k-1}])/(k+1)+t[n,k-

1],If[k==1,(-t[n-1,k]-Sum[t[n,i],{i,2,n-1}])/(n+1)+t[n-1,k],If[n>=k,-

Sum[t[n-i,k],{i,1,k-1}],-Sum[t[k-i,n],{i,1,n-1}]]]]]]; 

nn=100; 

MatrixForm[Table[Table[t[n,k],{k,1,nn}],{n,1,nn}]]; 

Table[t[1,k],{k,1,nn}]-2 (*Mats Granvik,Jul 10,2011*) 

 

Further interesting arithmetical relations to the zeta function and other functions can be 

found on the Internet42.  

 

7.8 THE RADICAL 
 

The radical rad(𝑛) is defined as the product of different prime factors of 𝑛: 

rad(𝑛) =∏𝒑
𝒑|𝒏
𝒑∈ℙ

 
(110) 

 

The calculation using Mathematica is very simple: 

Table[Last[Select[Divisors[n], SquareFreeQ]], {n, 100}] 

rad[n_] := Times @@ (First@# & /@ FactorInteger@ n); Array[rad, 100] 

The first 50 values read: 

{1,2,3,2,5,6,7,2,3,10,11,6,13,14,15,2,17,6,19,10,21,22,23,6,5,26,3,14,

29,30,31,2,33,34,35,6,37,38,39,10,41,42,43,22,15,46,47,6,7,10} 

 
42 https://en.wikipedia.org/wiki/Mertens_function 

https://en.wikipedia.org/wiki/Mertens_function
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Figure 64. Radical(n) (n=1,100) 

Properties 

An important application of the function rad(𝑛) can be found in the examination of the 

‘abc conjecture‘ (Chapter 11.1). 

Note: 

The Moebius transformation of rad(n) gives the absolute values of 𝜇(𝑛)𝜑(𝑛). 
 

 

7.9 RAMANUJAN SUMS  

Ramanujan series 

Using the Ramanujan sums 𝑐𝑞(𝑛), many arithmetical functions can be represented by a 

so-called Ramanujan series expansion: 

 

𝟎 = ∑
𝟏

𝒌
𝒄𝒒(𝒏)

∞
𝒌=𝟏   (Ramanujan series of the null function) 

𝝈𝒔(𝒏) = 𝒏
𝒔𝜻(𝒔 + 𝟏)∑

𝒄𝒒(𝒏)

𝒒𝒔+𝟏
∞
𝒒=𝟏  (Ramanujan series of the sigma function) 

𝝈𝟎(𝒏) = −∑
𝒍𝒏(𝒒)

𝒒

∞
𝒒=𝟏 𝒄𝒒(𝒏) (number-of-divisors function) 
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7.9.1 DEFINITION  

A Ramanujan sum is a function depending on two integers 𝑛 and 𝑞: 

 

𝒄𝒒(𝒏) = ∑ 𝒆
𝟐𝝅𝒊

𝒂
𝒒
𝒏
,

𝒒

𝒂=𝟏
(𝒂,𝒒)=𝟏

 𝒏 = 𝟎, 𝟏, 𝟐, …  let (𝒂, 𝟎) be defined as 𝒂 (111) 

 

(𝑎, 𝑞) = 1 means that gcd(𝑎, 𝑞) shall be 1, i.e. 𝑎 and 𝑞 shall be ‘coprime’; i.e. the sum 

includes all 𝑎 that are coprime to 𝑞 (gcd(𝑎, 𝑞) = 1). 

Example: the Ramanujan sums for 𝑞 = 1 to 15 (and 𝑛 = 0 to 20) are (the periodicity is 

in each case 𝑞, printed in red): 
 

𝑐1(𝑛):{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,…}  

𝑐2(𝑛):{1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,…}  

𝑐3(𝑛):{2,-1,-1,2,-1,-1,2,-1,-1,2,-1,-1,2,-1,-1,2,-1,-1,2,-1,-1,…}  

𝑐4(𝑛):{2,0,-2,0,2,0,-2,0,2,0,-2,0,2,0,-2,0,2,0,-2,0,2,…}  

𝑐5(𝑛):{4,-1,-1,-1,-1,4,-1,-1,-1,-1,4,-1,-1,-1,-1,4,-1,-1,-1,-1,4,…}  

𝑐6(𝑛):{2,1,-1,-2,-1,1,2,1,-1,-2,-1,1,2,1,-1,-2,-1,1,2,1,-1,…} 

𝑐7(𝑛):{6,-1,-1,-1,-1,-1,-1,6,-1,-1,-1,-1,-1,-1,6,-1,-1,-1,-1,-1,-1,…} 

𝑐8(𝑛):{4,0,0,0,-4,0,0,0,4,0,0,0,-4,0,0,0,4,0,0,0,-4,…} 

𝑐9(𝑛):{6,0,0,-3,0,0,-3,0,0,6,0,0,-3,0,0,-3,0,0,6,0,0,…} 

𝑐10(𝑛):{4,1,-1,1,-1,-4,-1,1,-1,1,4,1,-1,1,-1,-4,-1,1,-1,1,4,…} 

𝑐11(𝑛):{10,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,10,-1,-1,-1,-1,-1,-1,-1,-1,-
1,…}(11) 

𝑐12(𝑛):{4,0,2,0,-2,0,-4,0,-2,0,2,0,4,0,2,0,-2,0,-4,0,-2,…} 

𝑐13(𝑛):{12,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,12,-1,-1,-1,-1,-1,-1,-
1,…} 

𝑐14(𝑛):{6,1,-1,1,-1,1,-1,-6,-1,1,-1,1,-1,1,6,1,-1,1,-1,1,-1,…} 

𝑐15(𝑛):{8,1,1,-2,1,-4,-2,1,1,-2,-4,1,-2,1,1,8,1,1,-2,1,-4,…} 

𝑐16(𝑛):{{8,0,0,0,0,0,0,0,-8,0,0,0,0,0,0,0,8,0,0,0,0} 

𝑐17(𝑛):{{16,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,16,-1,-1,-1} 
 

 

Mathematica program for the table above (please note that the table has not been created 

by numerical calculations, but only by means of symbolic computation …): 
 

Clear[q]; Clear[n]; 

Column[Table[FullSimplify[Sum[If[GCD[a,q]==1,Exp[2*Pi*I*a*(n/q)],0],{a

,1,q}]],{q,1,17},{n,0,20}]] 

 

or (if 𝑛 is limited up to the period): 
Column[Table[FullSimplify[Sum[If[GCD[a,q]==1,Exp[2*Pi*I*a*(n/q)],0],{a

,1,q}]],{q,1,15},{n,0,q}]] 

The following representation with real trigonometric functions can be extended to  ℝ 

(below the 𝑐𝑞(𝑛) going from 𝑛 =  1 to 17), prime indices are shown in red: 
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Cos[2𝑛𝜋]

Cos[𝑛𝜋]

Cos[
2𝑛𝜋

3
] + Cos[

4𝑛𝜋

3
]

Cos[
𝑛𝜋

2
] + Cos[

3𝑛𝜋

2
]

Cos[
2𝑛𝜋

5
] + Cos[

4𝑛𝜋

5
] + Cos[

6𝑛𝜋

5
] + Cos[

8𝑛𝜋

5
]

Cos[
𝑛𝜋

3
] + Cos[

5𝑛𝜋

3
]

Cos[
2𝑛𝜋

7
] + Cos[

4𝑛𝜋

7
] + Cos[

6𝑛𝜋

7
] + Cos[

8𝑛𝜋

7
] + Cos[

10𝑛𝜋

7
] + Cos[

12𝑛𝜋

7
]

Cos[
𝑛𝜋

4
] + Cos[

3𝑛𝜋

4
] + Cos[

5𝑛𝜋

4
] + Cos[

7𝑛𝜋

4
]

Cos[
2𝑛𝜋

9
] + Cos[

4𝑛𝜋

9
] + Cos[

8𝑛𝜋

9
] + Cos[

10𝑛𝜋

9
] + Cos[

14𝑛𝜋

9
] + Cos[

16𝑛𝜋

9
]

Cos[
𝑛𝜋

5
] + Cos[

3𝑛𝜋

5
] + Cos[

7𝑛𝜋

5
] + Cos[

9𝑛𝜋

5
]

Cos [
2𝑛𝜋

11
] + Cos [

4𝑛𝜋

11
] + Cos [

6𝑛𝜋

11
] + Cos [

8𝑛𝜋

11
] + Cos [

10𝑛𝜋

11
] +

Cos[
12𝑛𝜋

11
] + Cos[

14𝑛𝜋

11
] + Cos[

16𝑛𝜋

11
] + Cos[

18𝑛𝜋

11
] + Cos[

20𝑛𝜋

11
]

Cos[
𝑛𝜋

6
] + Cos[

5𝑛𝜋

6
] + Cos[

7𝑛𝜋

6
] + Cos[

11𝑛𝜋

6
]

Cos [
2𝑛𝜋

13
] + Cos [

4𝑛𝜋

13
] + Cos [

6𝑛𝜋

13
] + Cos [

8𝑛𝜋

13
] + Cos [

10𝑛𝜋

13
] + Cos [

12𝑛𝜋

13
] +

Cos[
14𝑛𝜋

13
] + Cos[

16𝑛𝜋

13
] + Cos[

18𝑛𝜋

13
] + Cos[

20𝑛𝜋

13
] + Cos[

22𝑛𝜋

13
] + Cos[

24𝑛𝜋

13
]

Cos[
𝑛𝜋

7
] + Cos[

3𝑛𝜋

7
] + Cos[

5𝑛𝜋

7
] + Cos[

9𝑛𝜋

7
] + Cos[

11𝑛𝜋

7
] + Cos[

13𝑛𝜋

7
]

Cos[
2𝑛𝜋

15
] + Cos[

4𝑛𝜋

15
] + Cos[

8𝑛𝜋

15
] + Cos[

14𝑛𝜋

15
] + Cos[

16𝑛𝜋

15
] + Cos[

22𝑛𝜋

15
] + Cos[

26𝑛𝜋

15
] + Cos[

28𝑛𝜋

15
]

Cos[
𝑛𝜋

8
] + Cos[

3𝑛𝜋

8
] + Cos[

5𝑛𝜋

8
] + Cos[

7𝑛𝜋

8
] + Cos[

9𝑛𝜋

8
] + Cos[

11𝑛𝜋

8
] + Cos[

13𝑛𝜋

8
] + Cos[

15𝑛𝜋

8
]

Cos [
2𝑛𝜋

17
] + Cos [

4𝑛𝜋

17
] + Cos [

6𝑛𝜋

17
] + Cos [

8𝑛𝜋

17
] + Cos [

10𝑛𝜋

17
] + Cos [

12𝑛𝜋

17
] + Cos [

14𝑛𝜋

17
] + Cos [

16𝑛𝜋

17
] +

Cos[
18𝑛𝜋

17
] + Cos[

20𝑛𝜋

17
] + Cos[

22𝑛𝜋

17
] + Cos[

24𝑛𝜋

17
] + Cos[

26𝑛𝜋

17
] + Cos[

28𝑛𝜋

17
] + Cos[

30𝑛𝜋

17
] + Cos[

32𝑛𝜋

17
]

 

Table: Ramanujan sums 𝒄𝒒(𝑛) represented by cos() terms. This representation can be 

extended from ℕ to ℝ or ℂ (see illustration below). 
 

Mathematica program for the table above: 

Clear[n]; 

Column[Table[FullSimplify[Sum[If[GCD[a,q]==1,Cos[2*Pi*a*(n/q)],0],{a,1

,q}]],{q,1,17}]] 

For integers, the representation can be simplified (in each case the second half of a term 

is the same as the first half, prime indices in red): 
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1,
Cos[𝑛𝜋],

2Cos [
2𝑛𝜋

3
] ,

2Cos [
𝑛𝜋

2
] ,

2 (Cos [
2𝑛𝜋

5
] + Cos [

4𝑛𝜋

5
]) ,

Cos [
𝑛𝜋

3
] ,

2 (Cos [
2𝑛𝜋

7
] + Cos [

4𝑛𝜋

7
] + Cos [

6𝑛𝜋

7
]) ,

2 (Cos [
𝑛𝜋

4
] + Cos [

3𝑛𝜋

4
]) ,

2 (Cos [
2𝑛𝜋

9
] + Cos [

4𝑛𝜋

9
] + Cos [

8𝑛𝜋

9
]) ,

2 (Cos [
𝑛𝜋

5
] + Cos [

3𝑛𝜋

5
]) ,

2 (Cos [
2𝑛𝜋

11
] + Cos [

4𝑛𝜋

11
] + Cos [

6𝑛𝜋

11
] + Cos [

8𝑛𝜋

11
] + Cos [

10𝑛𝜋

11
]) ,

2 (Cos [
𝑛𝜋

6
] + Cos [

5𝑛𝜋

6
]) ,

2 (Cos [
2𝑛𝜋

13
] + Cos [

4𝑛𝜋

13
] + Cos [

6𝑛𝜋

13
] + Cos [

8𝑛𝜋

13
] + Cos [

10𝑛𝜋

13
] + Cos [

12𝑛𝜋

13
])

2 (Cos [
𝑛𝜋

7
] + Cos [

3𝑛𝜋

7
] + Cos [

5𝑛𝜋

7
]) ,

2 (Cos [
2𝑛𝜋

15
] + Cos [

4𝑛𝜋

15
] + Cos [

8𝑛𝜋

15
] + Cos [

14𝑛𝜋

15
]) ,

2 (Cos [
𝑛𝜋

8
] + Cos [

3𝑛𝜋

8
] + Cos [

5𝑛𝜋

8
] + Cos [

7𝑛𝜋

8
]) ,

2(
Cos [

2𝑛𝜋

17
] + Cos [

4𝑛𝜋

17
] + Cos [

6𝑛𝜋

17
] + Cos [

8𝑛𝜋

17
] +

Cos [
10𝑛𝜋

17
] + Cos [

12𝑛𝜋

17
] + Cos [

14𝑛𝜋

17
] + Cos [

16𝑛𝜋

17
]

)

 

  

Table: Ramanujan sums 𝑐𝑞(𝑛) represented by cos() terms, for integer numbers 𝑛. 

There is an alternative method of calculating the Ramanujan sum, using the Moebius 

function 𝜇(𝑛) and the Euler totient function 𝜑(𝑞): 

 

𝒄𝒒(𝒏) = 𝝁(
𝒒

(𝒒, 𝒏)
)

𝝋(𝒒)

𝝋(
𝒒

(𝒒, 𝒏)
)
 

(112) 

 

Mathematica: 

nmax=14;cnq[q_,n_]:=EulerPhi[q]*(MoebiusMu[q/GCD[q,n]]/ 

EulerPhi[q/GCD[q,n]]);Column[Table[cnq[q,n],{q,1,nmax},{n,1,nmax}]] 

 

Here are a few graphic illustrations of Ramanujan sums: 
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Mathematica program: please contact the author. 

 

 

Figure 65. Ramanujan sums  𝑐𝑞(n) from 𝑞 = 1 to 12 and 𝑛 going from 0 to 17 

Mathematica programm: please contact the author. 
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Figure 66. Ramanujan sums  𝑐𝑞(n) from 𝑞 = 1 to 24 and 𝑛 from 0 to 24 

  

7.9.2 PROPERTIES 

𝒄𝒒(𝒏) has a number of remarkable properties. The following ones can easily be checked 

using the table above: 

𝒄𝒒(𝒏) is always real and integer despite its complex definition. 

𝒄𝒒(𝒏) = 𝒄𝒒(−𝒏)  

𝒄𝒒(𝟎) = 𝝋(𝒒)  

𝒄𝒒(𝟏) = 𝝁(𝒒)  

𝒄𝒒𝒓(𝒏) = 𝒄𝒒(𝒏)𝒄𝒓(𝒏), 𝐢𝐟 (𝒒, 𝒓) = 𝟏 (multiplicativity) 

𝒄𝒒(𝒏) = 𝒄𝒒((𝒒, 𝒏))  

|𝒄𝒒(𝒏)| never becomes larger than 𝝋(𝒒), if 𝒒 is fixed) 

|𝒄𝒒(𝒏)| never becomes larger than 𝒏 (if 𝒏 is fixed) 
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𝒄𝒒(𝒏) = 0, if the natural number 
𝒒

(𝒒,𝒏)
 has 𝒑𝟐 as a divisor, 𝒑 being prime 

𝒄𝒒(𝒒) = 𝒄𝒒(𝒌𝒒) =  𝝋(𝒒), 𝒌 = 𝟎, 𝟏, 𝟐, …  

𝒄𝒑(𝒏) = {
−𝟏, 𝐢𝐟 𝒑 ∤ 𝒏

𝝋(𝒑), 𝐢𝐟 𝒑 | 𝒏
}  

𝒄𝒑𝒌(𝒏) = {

𝟎, 𝐢𝐟 𝒑𝒌−𝟏 ∤ 𝒏

−𝟏𝒑𝒌−𝟏, 𝐢𝐟 𝒑𝒌−𝟏 | 𝒏 𝐚𝐧𝐝 𝒑𝒌 ∤ 𝒏

𝝋(𝒑𝒌), 𝐢𝐟 𝒑𝒌 | 𝒏

}  

∑ 𝒄𝒒(𝒏) = 𝟎
𝒂+𝒒−𝟏
𝒏=𝒂  (the sum over all terms of a period results in 0!) 

𝟏

𝒎
∑ 𝒄𝒎𝟏(𝒌)𝒄𝒎𝟐(𝒌) = {

𝝋(𝒎), 𝐢𝐟 𝒎𝟏 = 𝒎𝟐 = 𝒎
𝟎, 𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞

}𝒎
𝒌=𝟏  (m = lcm(𝒎𝟏,𝒎𝟐))  

(orthogonality) 

 

 

 

7.9.3 EXTENSION TO ℝ 

If we allow 𝑛 to have any real values 𝑥, then we get a real function that depends on an 

integer parameter 𝑞: 

𝒄𝒒(𝒙) = ∑ 𝒆
𝟐𝝅𝒊

𝒂
𝒒
𝒙
,

𝒒

𝒂=𝟏
(𝒂,𝒒)=𝟏

  (113) 

 

Here are a few graphic illustrations of Ramanujan sums: 

 

Mathematica program: please contact the author. 
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Figure 67. Ramanujan sums  𝑐𝑞(x), analytically extended (𝑞 = 1 to 6 and 𝑥 = 0 to 30) 

Mathematica program: please contact the author. 
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Figure 68. Ramanujan sums  𝑐𝑞(x), analytically extended (𝑞 = 7 to 12 and 𝑥 = 0 to 30) 
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8 FUNCTIONS FOR THE CALCULATION OF PRIME NUMBERS  

We distinguish between the following types of functions that can be used to compute 

prime numbers: 

- functions 𝑓(𝑛) that provide exactly all 𝑝𝑛 

- functions 𝑓(𝑛) that always return a prime number 

- functions 𝑓(𝑛) whose positive sets of integer values assumed by the function are 

identical to the set of prime numbers 

- functions that calculate the number of primes up to a given limit 

8.1 FUNCTIONS THAT PROVIDE EXACTLY ALL PRIME NUMBERS 

𝑝𝑛 = ⌊1 − log2(−
1

2
+ ∑

𝜇(𝑑)

2𝑑 − 1
𝑑|𝑃𝑛−1

)⌋ (114) 

 

With 𝑃𝑛 being the primorial function, which means 𝑝1𝑝2𝑝3…𝑝𝑛 (aka as 𝑃#). The identity was 

discovered by J.M. Gandhi (1971). 

The next formula comes from Williams (1964). For this he needs the prime counting 

function 𝜋(𝑛) or the following function 𝐹(𝑗), which is defined as follows: 

𝐹(𝑗) = [cos2 (𝜋
(𝑗 − 1)! + 1

𝑗
)] 

𝑝𝑛 = 1+∑  [[
𝑛

∑ 𝐹(𝑗)𝑚
𝑗=1

]

1
𝑛
]

2𝑛

𝑚=1

 (115) 

 

or: 

𝑝𝑛 = 1+∑  [[
𝑛

1+ 𝜋(𝑚)
]

1
𝑛
]

2𝑛

𝑚=1

 (116) 

 

𝑝𝑛 = [10
2𝑛𝛼] − 102

𝑛−1
[102

𝑛−1 𝛼],where 𝛼 = ∑
𝑝𝑚
102

𝑚

∞

𝑚=1

 (117) 

 

All these formulae are very interesting theoretically, but they are not suitable for the 

practical calculation of prime numbers. 
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8.2 FUNCTIONS THAT ALWAYS RETURN A PRIME NUMBER 

 

𝑝𝑛 = ⌊𝐴
3𝑛⌋ (118) 

 

𝐴 is called the ‘Mills constant‘ and has approximately a value of 1.3063778838. The 

first six prime numbers generated by this formula (‘Mills’ prime numbers) read: 

2, 11, 1361, 2521008887, 16022236204009818131831320183, 

41131011492151048000305295379159531704861396235397599331359

49994882770404074832568499 

So far, the first 11 ‘Mill’ primes of the form ⌊𝐴3
𝑛
⌋ have been calculated, the largest one 

having more than 20000 decimal digits. The Mills constant 𝐴 has been calculated up to a 

precision of 6850 decimal digits (as of Nov. 2015).  

Wright (1951) found the following formula: 

𝑝𝑛 = [2
22
2.
..2𝜔

] (power tower from n exponents,𝜔 = 1.9287800) (119) 

 

The first primes of this sequence read: 

3,13,16381, … (the fourth already has more than 5000 decimal digits) 

8.3 FUNCTIONS WHOSE SET OF POSITIVE INTEGERS EQUATES TO 

THE SET OF PRIME NUMBERS  

Since the year 1976, a polynomial of degree 25 with 26 variables has been known (Jones, 

Sato, Wada & Wies)43 whose positive set of values coincides with the set of primes, 

provided the 26 variables are integers. 

Let us define the following constants: 

𝐶0 = 𝑤𝑧 + ℎ + 𝑗 − 𝑞 
𝐶1 = (𝑔𝑘 + 2𝑔 + 𝑘 + 1)(ℎ + 𝑗) + ℎ − 𝑧 
𝐶2 = 2𝑛 + 𝑝 + 𝑞 + 𝑧 − 𝑒 
𝐶3 = 16(𝑘 + 1)3(𝑘 + 2)(𝑛 + 1)2 + 1 − 𝑓2 
𝐶4 = 𝑒3(𝑒 + 2)(𝑎 + 1)2 + 1 − 𝑜2 
𝐶5 = (𝑎2 − 1)𝑦2 + 1 − 𝑥2 
𝐶6 = 16𝑟2𝑦4(𝑎2 − 1) + 1 − 𝑢2 

𝐶7 = ((𝑎 + 𝑢2(𝑢2 − 𝑎))
2
− 1) (𝑛 + 4𝑑𝑦)2 + 1 − (𝑥 + 𝑐𝑢)2 

𝐶8 = 𝑛 + 𝑙 + 𝑣 − 𝑦 
𝐶9 = (𝑎2 − 1)𝑙2 + 1 −𝑚2 

 
43 
https://www.maa.org/sites/default/files/pdf/upload_library/22/Ford/JonesSatoWadaWiens.pdf 

https://www.maa.org/sites/default/files/pdf/upload_library/22/Ford/JonesSatoWadaWiens.pdf
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𝐶10 = 𝑎𝑖 + 𝑘 + 1 − 𝑙 − 𝑖 
𝐶11 = 𝑝 + 𝑙(𝑎 − 𝑛 − 1) + 𝑏(2𝑎𝑛 + 2𝑎 − 𝑛2 − 2𝑛 − 2) − 𝑚 
𝐶12 = 𝑞 + 𝑦(𝑎 − 𝑝 − 1) + 𝑠(2𝑎𝑝 + 2𝑎 − 𝑝2 − 2𝑝 − 2) − 𝑥 
𝐶13 = 𝑧 + 𝑝𝑙(𝑎 − 𝑝) + 𝑡(2𝑎𝑝 − 𝑝2 − 1) − 𝑝𝑚 
 

Then there exists the following inequality whose positive integer solutions exactly 

coincide with the set of all prime numbers: 

(𝒌 + 𝟐)(𝟏 − 𝑪𝟎𝟐 − 𝑪𝟏𝟐 −⋯− 𝑪𝟏𝟑𝟐) > 𝟎 (120) 

You can write a Mathematica program using this formula to search for prime numbers 

(see Appendix). You can also run the program to find positive solutions for this 

polynomial. But you will need a lot of patience: a Quad Core Pentium 3 GHz once 

devoted an entire week to the search without finding a solution! 

8.4 RECURSIVE FORMULAE 

𝒑𝒏 = 𝒑𝒏−𝟏 +𝒈𝒈𝑻(𝒏, 𝒑𝒏−𝟏),𝑤ℎ𝑒𝑟𝑒 𝒑𝟏 = 𝟕 (121) 

 

This sequence contains only primes or 1’s44. If we discard the 1’s we get: 

{5,3,11,3,23,3,47,3,5,3,101,3,7,11,3,13,233,3,467,3,5,3,941

,3,7,1889,3,3779,3,7559,3,13,15131,3,53,3,7,30323,3,60647,3

,5,3,101,3,121403,3,242807,3,5,3,19,7,5,3,47,3,37,5,3,17,3,

199,53,3,29,3,486041,3,7,421,23,3,972533,3,577,7} 

f[1] = 7; f[n_] := f[n] = f[n - 1] + GCD[n, f[n - 1]]; 

DeleteCases[Differences[Table[f[n], {n, 10^6}]], 1] 

 

  

 
44 Eric S. Rowland, A simple prime-generating recurrence, Abstracts Amer. Math. Soc., 29 (No. 1, 2008), 

p. 50 
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8.5 FUNCTIONS HAVING ZEROS OR MINIMA AT PRIME NUMBER 
POSITIONS  

8.5.1 A VARIANT OF THE ℨ FUNCTION 

 

In Chapter 5.4, we introduced a function the minima of which are the prime numbers: 

 

ℨ(𝑠) =∏
1

(1 − 𝑠−
1
2
−𝜌𝑛⋅𝑖)

 where 𝜌𝑛: zeros of ζ (s) 

∞

𝑛=1

 

 

With this we have an infinite product that runs over all non-trivial zeros of the zeta 

function. This function is unsuitable, however, for the practical calculation of primes, 

since it is very expensive in terms of computing time and there are also problems with the 

convergence properties of the infinite product, because this infinite product converges 

only locally at the prime positions. If we break off the infinite product at a finite value 

(e.g. 100 or 1000), we in fact obtain a function-graph in which minima close to zero 

appear at the location of the prime numbers. The accuracy of the position of the zeros is 

the higher, the more product terms are taken into account. The disadvantage is that the 

'prime' regions having larger differences to prime positions will diverge and become very 

large. A small modification results in a 'smoother' function graph: 
 

ℨ∗(𝑥) = ln(1 + 𝐴𝑏𝑠∏
1

(1 − 𝑥−
1
2
−𝜌𝑛⋅𝑖)

[3𝑥]

𝑛=1

) (122) 

 

Here is a function graph of ℨ∗(𝑥): 
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Figure 69. Variant of  ℨ(x) after (122) from 10 to 100, with zeros (minima) at prime numbers  

Mathematica: 

cterm[n_,p_]:=N[1/(1-p^(-ZetaZero[n]))]; 

myFunc[p_]:=Product[cterm[n,p],{n,1,3*p}] 

xmin=10;xmax=100;Show[ListPlot[Table[{Prime[i],0},{i,5,PrimePi[xmax]}]

,PlotRange->{{xmin,xmax},{-0.2,2.5}}],Plot[Log[1+Abs[myFunc[x]]], 

{x,2,xmax},PlotStyle->Black,PlotRange->{{xmin,xmax},{-0.2,2.5}}]] 

 

Note: there are also minima at positions belonging to powers of primes (less strong). 

 

 

8.5.2 THE REED JAMESON FUNCTION 

In Chapter 4.10.1.4, we discussed the recursive Reed Jameson sequence. The sum of the 

modulus values belonging to negative and positive indices is 0 if the corresponding index 

𝑛 is a prime number. 

The Reed Jameson sequence is recursively defined by: 

𝑎𝑛 = 𝑎𝑛−5 + 𝑎𝑛−2, where 𝑎0 = 5, 𝑎1 = 0, 𝑎2 = 2, 𝑎3 = 0, 𝑎4 = 2  

The inverse Reed Jameson sequence is recursively defined by: 

𝑏𝑛 = 𝑏𝑛−5 − 𝑏𝑛−3, where 𝑏0 = 5, 𝑏1 = 0, 𝑏2 = 0, 𝑏3 = −3, 𝑏4 = 0 

𝑹𝒏 = (𝒂𝒏 𝐦𝐨𝐝 𝒏) + (𝒃𝒏 𝐦𝐨𝐝 𝒏) (123) 

 

The assumption that 𝑹𝒏 is 𝟎 (and only then) if 𝒏 is a prime number was numerical 

disproven in 2018 by Peter Danzeglocke. He found Reed Jameson pseudoprimes in 
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the range > 𝟏𝟎𝟏𝟓 (see Appendix). Remarkable is the fact that the method works in 

the range up to 𝟏𝟎𝟏𝟎 (as of Dec. 2020).45 

Graph of the Reed Jameson function: 

 

Figure 70. Reed Jameson function from 0 to 100 

Mathematica program: please contact the author. 

8.5.3 OTHER ARITHMETICAL FUNCTIONS HAVING ZEROS AT PRIME NUMBER 
POSITIONS 

Using the Euler totient function 𝜑(𝑛): 

𝑓(𝑛) = 𝜑(𝑛) − 𝑛 + 1 (is 0, if 𝑛 is a prime number) 

Using the sum of divisors function 𝜎𝑘(𝑛): 

𝑓(𝑛) = 𝜎1(𝑛) − 𝑛 − 1 (is 0, if n is a prime number) 

𝑓(𝑛) = 𝜎0(𝑛) − 2 (is 0, if 𝑛 is a prime number) 

8.6 FORMULAE FOR CALCULATING THE NUMBER OF PRIMES 

Let us take a closer look at the prime counting function 𝜋(𝑛): 

𝜋: ℕ → ℕ, 𝑛 ↦  𝜋(𝑛): 𝜋(𝑛) = |{𝑝 ∈ ℙ |𝑝 ≤ 𝑛}| 

Here, ℙ is the set of the prime numbers and |…| denotes the number of elements of the 

set. The pi function is usually extended to the field of the real numbers: 𝜋(𝑥), 𝑥 ∈ ℝ 

 
45 It is known, that many linear recurrent sequences always contain infinitely many pseudo primes. 
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Here are a few exact formulae: 

Hardy and Wright (1979): 

𝜋(𝑛) = −1 +∑[(𝑗 − 2)! − 𝑗 ⌊
(𝑗 − 2!)

𝑗
⌋]

𝑛

𝑗=3

 

 

(124) 

Williams (1964): 

𝜋(𝑛) = −1 +∑𝐹(𝑗),where 𝐹(𝑗) =

𝑛

𝑗=1

[cos2 (𝜋
(𝑗 − 1)! + 1

𝑗
)] (125) 

 

or 

𝜋(𝑛) = −1 +∑𝐻(𝑗),where 𝐻(𝑗) =

𝑛

𝑗=2

sin2(𝜋
((𝑗 − 1)!)

2

𝑗 )

sin2
𝜋
𝑗

 (126) 

 

A similar formula originates from Mini: 

𝜋(𝑛) =∑[
(𝑗 − 1)! + 1

𝑗
− [
(𝑗 − 1)!

𝑗
]]

𝑛

𝑗=2

 (127) 

 

The simplest formula has been well known since the 18th century (Legendre and Gauss, 

1798): 
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𝝅(𝒙)  ≈  
𝒙

𝐥 𝐧(𝒙) − 𝟏. 𝟎𝟖𝟑𝟔𝟔
 (128) 

 

Figure 71. Comparison  𝜋(n) with Gauss approximation 

Mathematica:  

Plot[{x/(Log[x]-1.08366),PrimePi[x]},{x,1,1000},PlotRange-

>{{0,1000},{0,200}},PlotPoints->200,PlotLegends->"Expressions"] 

A better approximation, also originating from C. F. Gauss:  

𝝅(𝒙) = 𝑳𝒊(𝒙) + 𝑶(√𝒙 ⋅ 𝐥𝐧(𝒙)) 
 

with: 𝐿𝑖(𝑥) = ∫
𝑑𝑡

ln (𝑡)

𝑥

2
 (logarithmic integral function) 

 

 

(129) 
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Figure 72. Comparison  𝜋(n) with logarithmic integral function, from 1 to 1000 

Mathematica:  

Plot[{LogIntegral[x],PrimePi[x]},{x,1,1000},PlotRange-

>{{0,1000},{0,200}},PlotPoints->200,PlotLegends->"Expressions"] 

It looks as if 𝐿𝑖(𝑥) is always greater than 𝜋(𝑥). For small 𝑥, this is right. However, for 

very large 𝑥, 𝐿𝑖(𝑥) has been shown to be smaller than 𝜋(𝑥). In 1914, L. E. Littlewood 

proved that the difference 𝜋(𝑥) − 𝐿𝑖(𝑥) changes sign infinitely often. Since then it has 

been proven that the first change of sign cannot occur earlier than 1,39822 ⋅ 10316 

(Richard Hudson, 2000). However, the point of the first sign change cannot be smaller 

than 1014 (Kotnik, 2008). 

This is a very amazing property of the prime counting function and the function 𝐿𝑖(𝑥). It 
shows that very, very large numbers can have new, unexpected properties. In other words: 

unexpected phenomena can also occur in astronomically high number regions. Moreover, 

this shows that we cannot always trust the 'numerical evidence'! 
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An even better approximation is the Riemann function 𝑅(𝑥): 

𝝅(𝒙) ≈ 𝑹(𝒙) (130) 

 

The best asymptotic formula is: 

𝝅(𝒙) ≈  𝑹(𝒙) −
𝟏

𝒍𝒏(𝒙)
+  𝒂𝒓𝒄𝒕𝒂𝒏(

𝝅

𝒍𝒏(𝒙)
) 

 

(131) 

 

Figure 73. Comparison  𝜋(n) with Riemann function R(x), in the range from 0 to 100 

Mathematica: Plot[{RiemannR[x]-

1/Log[x]+ArcTan[Pi/Log[x]]/Pi,PrimePi[x]},{x,1,100},PlotRange-

>{{0,100},{0,26}},PlotPoints->200,PlotLegends->"Expressions"] 

 

Figure 74. Comparison  𝜋(n) with Riemann function R(x), range from 0 to 1000 
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Mathematica:  

Plot[{RiemannR[x]-

1/Log[x]+ArcTan[Pi/Log[x]]/Pi,PrimePi[x]},{x,1,1000},PlotRange-

>{{0,1000},{0,200}},PlotPoints->200,PlotLegends->"Expressions"] 

And finally, here is the mysterious, exact formula found by Riemann: 

𝝅(𝒙) = 𝑹(𝒙) −∑𝑹(𝒙𝝆)

𝝆

 (132) 

Using the Riemann function 𝑅(𝑥). 

𝝅𝟎(𝒙) = 𝑹(𝒙) −∑𝑹(𝒙𝝆) −
𝟏

𝒍𝒏(𝒙)
+
𝟏

𝝅
𝝆

𝒂𝒓𝒄𝒕𝒂𝒏(
𝝅

𝒍𝒏(𝒙)
) (133) 

The Riemann function is a very good approximation for 𝜋(𝑥), but Riemann's formula 

(132) is much more precise. It also takes into account the small local fluctuations of 𝜋(𝑥) 
and finally fits (if enough zero terms of the zeta function are evaluated) to the exact integer 

stairs function of the arithmetical calculation. Note: the summation over the zero terms 

of the zeta function must occur in ascending order of increasing values of Im(𝜌), since 

the sum is only conditionally convergent. The calculation of 𝑅(𝑥𝜌)  requires the 

calculation of Li(𝑥𝜌) and is not quite as simple because the complex logarithm of 𝑥𝜌 has 

to be calculated. This function, in turn, is not injective and is not defined unambiguously 

The calculation of the principal value using the ‘main branch’ of the complex logarithm46 

would give incorrect results. In short, the problem lies in the fact that, for the complex 

logarithm, the equation ln(𝑥𝜌) = 𝜌 ln(𝑥) does not always obtain. However, the problem 

can be avoided by simply using Ei(𝜌 ln(𝑥)) instead of Li(𝑥𝜌), where Ei(𝑥) denotes the 

complex integral exponential function ( Li(x)  is the complex logarithmic integral 

function). Ei(𝑥) is closely related to Li(𝑥), since 𝐋𝐢(𝒙) =  𝐄𝐢(𝐥𝐧 𝒙). 

Note: the largest known values of 𝜋(𝑥) were obtained not by number theory but by the 

methods of analytical number theory. 

The following graphs show how the analytical formula approximates to the exact stair 

function: 

Mathematica program: please contact the author. 

 

 
46 The logarithm of the  kth branch is defined as  𝑤 = ln|𝑧| + 𝑖 (arg 𝑧 + 2𝑘𝜋), 𝑘 ∈ ℤ. For 𝑘 = 0  we 
have the main branch of the complex logarithm function. 
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Figure 75. Riemann’s exact formula for 𝜋(𝑥) (x =
 1 to 25, summing over the first 10 zero pairs of the zeta function) 

Mathematica-Program: please contact the author. 

 

 
Figure 76. Riemann’s exact formula for 𝜋(𝑥) (x =
 25 to 50, summing over the first 100 zero pairs of the zeta function) 

 

The number of composite numbers (‘non primes’) �̃�(𝑛) up to an given limit 𝑛 is simply 

 

�̃�(𝒏) = 𝒏 − 𝝅(𝒏) 
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Mathematica: 

n-PrimePi[n] 

 

More formulae for 𝝅(𝒙) 

 

𝝅(𝒙) ≈ 𝐥𝐢(𝒙) −
√𝒙

𝐥𝐧 𝒙
(𝟏 + 𝟐∑

𝐬𝐢𝐧(𝜸𝐥𝐧 𝒙)

𝜸
𝜸

) ,𝐰𝐡𝐞𝐫𝐞 𝜸 = 𝐈𝐦(𝝆) (134) 

 

Here, 𝜌 are the complex zeros of the zeta function. 

 

8.7 FORMULAE FOR CALCULATING THE NTH PRIME NUMBER 

Unlike in Chapter 8.1, here we want to look for analytical, asymptotic solutions. 

The calculation of the nth prime is difficult. No explicit, simple formula is known for this 

purpose. 

The best asymptotic estimate currently known is (as of Dec. 2016): 

𝒑𝒏  =  𝒏 (𝐥𝐧 𝒏 +  𝐥𝐧 𝐥𝐧 𝒏 −  𝟏 + 
(𝐥𝐧 𝐥𝐧 𝒏 −  𝟐)

𝐥𝐧 𝒏
 

−
(𝐥𝐧 𝐥𝐧 𝒏)𝟐  −  𝟔 𝐥𝐧 𝐥𝐧 𝒏 +  𝟏𝟏)

𝟐(𝐥𝐧 𝒏)𝟐
 ) 

Mathematica: 

Table[Prime[n],{n,1,100}] 

prime[n_]:=Block[{logn=N[Log[n],15],loglogn=N[Log[Log[n]],15]}

, 

n(logn+loglogn-1+(loglogn-2)/logn-(loglogn^2-

6loglogn+11)/(2logn^2))] 

 

(135

) 

 

 

8.8 FORMULAE FOR CALCULATING THE NTH NON-PRIME (COMPOSITE 
NUMBER) 

The nth non prime can be calculated using the following Mathematica program: (In this 

example: from n= 1 to 1000) 

Mathematica: 

composite[n_Integer]:=FixedPoint[n+PrimePi[#]&,n+PrimePi[n]] 

ListLinePlot[Table[{k,composite[k]},{k,0,1000,10}],Filling->Axis] 
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Figure 77. The nth composite number (‘non prime’)  

 

An asymptotic approximation for the nth non prime 𝑐𝑛 reads: 

𝒄𝒏 = 𝒏(𝟏 +
𝟏

𝐥𝐧𝒏
+

𝟐

𝐥𝐧𝟐 𝒏
+

𝟒

𝐥𝐧𝟑 𝒏
+

𝟏𝟗

𝟐𝐥𝐧𝟒 𝒏
+

𝟏𝟖𝟏

𝟔 𝐥𝐧𝟓 𝒏
+ 𝒐(

𝟏

𝐥𝐧𝟓 𝒏
)) (136) 
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9 NOW IT GETS INTERESTING: FOUR-DIMENSIONAL 
SPHERES AND PRIME NUMBERS 

What have spheres – even four-dimensional spheres – to do with primes? We will pursue 

this question in this chapter. In principle, the question arises as to how many integer lattice 

points in the n-dimensional space have the same difference from the origin (i.e. lie on the 

'surface' of an n-dimensional sphere). In mathematics the term 'n-sphere' is generally used 

for an n-dimensional sphere. So, for example, a 1-sphere is the circumference of a circle, 

a 2-sphere is the curved 2-dimensional surface of a sphere. A 3-sphere is the boundary of 

a 4-dimensional sphere, i.e. a three-dimensional space bent into the fourth dimension, 

which, for the sake of simplicity, we sometimes refer to as the ‘surface’ of the four-

dimensional sphere. The term 'glome' is also used for this. In this chapter, we are looking 

for integer lattice points (of a Cartesian coordinate system) that ‘sit’ on n-spheres in two-

, three-, or four-dimensional space. 

The Mathematica software provides three powerful tools for solving this problem: 

FindInstance:  

finds all points that lie on an n-sphere, here e.g. on a 2-sphere with radius √𝑛: 

FindInstance[x^2+y^2+z^2==n,{x,y,z},Integers,numberOfInstances] 

Since the solutions of FindInstance include many permutations and axis- and point-

symmetrically mirrored solutions due to the symmetry properties (the degree of symmetry 

becomes higher as the number of dimensions increases), the following function is also 

interesting, because it just computes the "core" of the solutions – that is to say, without 

the ‘mirrored’ solutions from negative quadrants, octaves, etc., or which can be generated 

by permutations: 

PowersRepresentations: 

Finds all (actually different, integer and positive) solutions of the equation  

𝑥2 + 𝑦2 + 𝑧2 = 𝑛 

Example: PowersRepresentations[n,3,2] 

And finally the function SquaresR: 

this provides (only) the number of solutions of FindInstance. 

E.g.: SquaresR[3,n] gives the number of solutions of 
FindInstance[x^2+y^2+z^2==n,{x,y,z},Integers,Infinity]] 

It will be shown that the spherical points on the n-spheres are not randomly distributed, 

but, on the contrary, form very beautiful structures that become more interesting the 

higher the dimensionality of the n-spheres. In the case of the 3-spheres ('surfaces' of four-

dimensional spheres), a remarkable relation exists between the number of spherical points 

and the prime numbers. This connection is very simple and is anticipated here: 
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If the square 𝑛 = 𝑟𝑎𝑑2 of the radius of a 4-dimensional sphere assumes the value of a 

prime number, then (and only then) the following relation applies: 

𝑟𝑎𝑑2 = 𝑛 =
𝑟4(𝑛)

8
− 1, if 𝑛 ∈ ℙ (137) 

 

This relationship has long been known since the function 𝑟4(𝑛) can be easily calculated 

from the sigma function 𝜎1(𝑛). However, there is no reference in the relevant literature 

to the beautiful connection with the 3-spheres ('surfaces') of four-dimensional spheres and 

primes. 

Just a curiosity: the number 12 plays a special role in the sequence 𝑟4(𝑛), since it is the 

only number for which 

𝑛 =
𝑟4(𝑛)

8
, only if 𝑛 = 12  (138) 

 

Since it is difficult to imagine four-dimensional objects, it is always a good idea to start 

with the counterpart in one or two lower dimensions. Thus we begin with two-

dimensional spheres (1-spheres) – ‘circles’, in common parlance.  
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9.1 THE SECOND DIMENSION: CIRCLES AND INTEGER LATTICE POINTS 

We are looking for the integer lattice points of our Cartesian coordinate system that can 

lie along the circumference (we are not interested in any lattice points lying within the 

circle, but only in lattice points that lie exactly on the circumference). If we assume that 

the radius of the circle increases continuously, the circular line runs through the lattice 

points of our coordinate system in order, which lie exactly on the circle line. The number 

of these possible lattice points that are touched by the circumference, of course, depends 

strongly on the radius of the circle. Let us suppose that we increase the circle radius 

continuously, then the circumference will run through the grid points of our coordinate 

system. We are interested in the grid points that lie exactly on the circumference. Here 

are 6 examples for 𝑟2 = 8 to 13: 

 

Figure 78. Lattice points on a 1-sphere, squared radius from 8 to 13 

Mathematica program: please contact the author. 

 

 

For some values with radius r, there are no integral solutions of the equation 𝑥2 + 𝑦2 =
𝑟2, and therefore no corresponding lattice points either that are touched by the circle. The 

"crossing" of the circular line through the two-dimensional grid points can be viewed in 

an animation (as a video on the enclosed CD) or as a Mathematica animation (see 

Appendix: “Lattice points on n-spheres (n-dimensional spheres)”). 

The function which calculates the number of integer lattice points on a circumference in 

2-dimensional space is called 𝑟2(𝑛). Its function values are all divisible by 4. The first 

100 values are: 
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{4,4,0,4,8,0,0,4,4,8,0,0,8,0,0,4,8,4,0,8,0,0,0,0,12,8,0,0,8,0,0,4,0,8,

0,4,8,0,0,8,8,0,0,0,8,0,0,0,4,12,0,8,8,0,0,0,0,8,0,0,8,0,0,4,16,0,0,8,

0,0,0,4,8,8,0,0,0,0,0,8,4,8,0,0,16,0,0,0,8,8,0,0,0,0,0,0,8,4,0,12} 

Mathematica: 

SquaresR[2,Range[100]] 

 

Example: the 8 solutions 𝑟2 = 5 read: 

{{-2,-1},{-2,1},{-1,-2},{-1,2},{1,-2},{1,2},{2,-1},{2,1}} 

Mathematica: 

FindInstance[x^2+y^2==5,{x,y},Integers,8] 

 

These solutions can be created from each other mutually by permutations or symmetrical 

mirroring. The number of genuinely different solutions is in this case 1: 
 

{{1,2}} 

Mathematica: 

PowersRepresentations[5,2,2] 

 

𝑟2(𝑛) is the number of lattice points in the 2-dimensional space lying on a circle with 

radius √𝑛. We denote 𝑟2
∗(𝑛) as the number of different, positive lattice points, such that 

0 ≤ 𝑛1 ≤ 𝑛2 and 𝑛1
2 + 𝑛2

2 = 𝑛. 

𝑟2(𝑛) has a value of 0 for many values of 𝑛. This means that not every natural number 

can be written as the sum of 2 squares. Here is a list of the first values of these 'non-

representable' numbers: 

 
{3,6,7,11,12,14,15,19,21,22,23,24,27,28,30,31,33,35,38,39,42,43,44,46,

47,48,51,54,55,56,57,59,60,62,63,66,67,69,70,71,75,76,77,78,79,83,84, 

86,87, 88,91,92,93,94,95,96,99,…} 

 

Mathematica: 

Select[Range[199], Length[PowersRepresentations[ #, 2, 2]] == 0 &] 

 

Here are two illustrations of 𝑟2(𝑛): 
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Figure 79. 𝑟2(𝑛): number/4 of possible representations of n as a sum of 2 squares. No 
simple relationship to prime numbers can be observed.  

 

 

Figure 80. 𝑟2(𝑛): number/4 of possible representations of n as a sum of 2 squares (up to 
n=100000)  

 

And finally a few plots of 𝑟2
∗(𝑛) for different values of 𝑛: 
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Figure 81. 𝑟2
∗(bn): number of different representations of bn as the sum of two squares 

Mathematica program (Figure 79): 
Show[ListLinePlot[Table[{n,SquaresR[2,n]/4},{n,1,150}], 

InterpolationOrder->0],ListPlot[Table[{Prime[n], 

SquaresR[2,Prime[n]]/4},{n,1,PrimePi[150]}],PlotStyle->Red] 

] 

 

Mathematica (Figure 80): 
Show[ListPlot[Table[{n,SquaresR[2,n]/4},{n,1,100000}],PlotRange->Full] 

] 

 

Mathematica (Figure 81): 
ListLinePlot[{Table[Length[PowersRepresentations[10^i,2,2]],{i,1,13}], 

Table[Length[PowersRepresentations[14^i,2,2]],{i,1,13}], 

Table[Length[PowersRepresentations[15^i,2,2]],{i,1,13}], 

Table[Length[PowersRepresentations[16^i,2,2]],{i,1,13}], 

Table[Length[PowersRepresentations[25^i,2,2]],{i,1,13}] 

},PlotLegends->Automatic,PlotRange->All] 

 

 

Note: integral solutions of 𝑥2 + 𝑦2 = 𝑟2 (where r is also an integer) are also referred to 

as 'Pythagorean triplets'. These correspond to the lattice points on a circular line with an 

integer radius r. 

9.1.1 FORMULAE AND PROPERTIES 

We restrict ourselves to the function 𝑟2(𝑛), which calculates the number of lattice points 

in two-dimensional space lying on a circle with radius √𝑛. For the function 𝑟2
∗(𝑛), which 
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calculates the number of different, positive grid points, such that: 0 ≤ 𝑛1 ≤ 𝑛2 and 𝑛1
2 +

𝑛2
2 = 𝑛, see note47. 

The generating function of 𝑟2(𝑛) is the squared elliptic Jacobi 𝜗3(𝑛) function: 

∑𝑟2(𝑛)𝑥
𝑛 =

∞

𝑛=0

𝜗3
2(𝑥) = 1 + 4𝑥 + 4𝑥2 + 4𝑥4 + 8𝑥5 +⋯ (139) 

 

Explicit formulae: 

𝑟2(𝑛) = 4[𝑑1 − 𝑑3], 𝑑𝑘: number of divisors of 𝑛 of the form 4𝑚 + 𝑘 (140) 

 

  

 
47 http://mathworld.wolfram.com/SumofSquaresFunction.html 

http://mathworld.wolfram.com/SumofSquaresFunction.html
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9.2 THIRD DIMENSION: SPHERES AND INTEGER LATTICE POINTS  

Here, too, we are searching for lattice points in a Cartesian coordinate system that lie on 

the surface of a sphere. The number of these possible lattice points that are touched by 

the spherical surface also strongly depends on the radius of the sphere. Let us suppose 

that we continually enlarge the radius of the sphere, and that the spherical surface then 

passes through the integer grid points of our coordinate system. We are interested in the 

lattice points that lie exactly on the surface of the sphere. Here are some examples: 

 

Figure 82. Integer lattice points of a sphere with squared radius 11! 

Mathematica program: please contact the author. 
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Figure 83. Integer lattice points of spheres (squared radius 999-102). 

For some values with radius 𝑟 there are no integer solutions of the equation 𝑥2 + 𝑦2 +
𝑧2 = 𝑟2  and therefore no corresponding lattice points either that are touched by the 

spherical surface. Some structures are only visible when the spheres are viewed from 

different viewing angles. This can be viewed in an animation (as a video on the enclosed 

CD) or as a Mathematica animation (see Appendix). The function that calculates the 

number of integer lattice points on the surface of a sphere in three-dimensional space is 

denoted in mathematical literature by 𝑟3(𝑛). We define 𝑟3
∗(𝑛) as the number of different, 

positive lattice points, such that  

0 ≤ 𝑛1 ≤ 𝑛2 ≤ 𝑛3 and 𝑛1
2 + 𝑛2

2 + 𝑛3
2 = 𝑛. 
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Many (but not all) function values of 𝑟3(𝑛) are divisible by 6. The first 100 values are: 

{6,12,8,6,24,24,0,12,30,24,24,8,24,48,0,6,48,36,24,24,48,24,0,24,30,72

,32,0,72,48,0,12,48,48,48,30,24,72,0,24,96,48,24,24,72,48,0,8,54,84,48

,24,72,96,0,48,48,24,72,0,72,96,0,6,96,96,24,48,96,48,0,36,48,120,56,2

4,96,48,0,24,102,48,72,48,48,120,0,24,144,120,48,0,48,96,0,24,48,108,7

2,30} 

Mathematica: 

SquaresR[3,Range[100]] 

 

Example: the 8 solutions of 𝑟2 = 3 read: 

{{-1,-1,-1},{-1,-1,1},{-1,1,-1},{-1,1,1},{1,-1,-1},{1,-1,1},{1,1,-1},{1,1,1}} 

Mathematica: 

FindInstance[x^2+y^2+z^2==3,{x,y,z},Integers,8] 

 

These solutions can be created from each other mutually by permutations or symmetrical 

mirroring. The number of genuinely different solutions in this case is 1: {{1,1,1}} 
Mathematica: 

PowersRepresentations[3,3,2] 

 

The first 100 values of 𝑟3
∗(𝑛) read: 

{1,1,1,1,1,1,0,1,2,1,1,1,1,1,0,1,2,2,1,1,1,1,0,1,2,2,2,0,2,1,0,1,2,2,1

,2,1,2,0,1,3,1,1,1,2,1,0,1,2,3,2,1,2,3,0,1,2,1,2,0,2,2,0,1,3,3,1,2,2,1

,0,2,2,3,2,1,2,1,0,1,4,2,2,1,2,3,0,1,4,3,1,0,1,2,0,1,2,3,3,2} 

Mathematica: 

Table[Length[PowersRepresentations[i,3,2]],{i,1,100}] or: 

a[ n_] := If[ n < 0, 0, Sum[ Boole[ n == i^2 + j^2 + k^2], {i, 0, 

Sqrt[n]}, {j, 0, i}, {k, 0, j}]]; 

 

As already mentioned above, 𝑟3(𝑛) has the value 0 for some 𝑛. This means that not every 

natural number can be written as the sum of 3 squares. Here is a list of the first values of 

these 'non-representable' numbers: 

 
{7,15,23,28,31,39,47,55,60,63,71,79,87,92,95,103,111,112,119,124,127,1

35,143,151,156,159,167,175,183,188,191,199} 

Mathematica: 

Select[Range[199], Length[PowersRepresentations[ #, 3, 2]] == 0 &] 

 

Here are two plots of 𝑟3(𝑛): 
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Figure 84. 𝑟3(𝑛): number/6 of possible representations of n as the sum of 3 squares. 

Mathematica: 

Show[ListLinePlot[Table[{n,SquaresR[3,n]/6},{n,1,150}],InterpolationOrder-

>0],ListPlot[Table[{Prime[n],SquaresR[3,Prime[n]]/6},{n,1,PrimePi[150]}],PlotS

tyle->Red]] 

 

Figure 85. Number/6 of possible representations of n as the sum of 3 squares (up to 100000) 

Mathematica: 

ListPlot[Table[{n,SquaresR[3,n]/6},{n,1,100000}],PlotRange-

>Full,PlotStyle->Black] 
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Here are a few plots illustrating 𝑟3
∗(𝑛): 

 

 
Figure 86. 𝑟3

∗(𝑛): Number of different representations of n as the sum of 3 squares, (n=1 to 500) 

 
Figure 87. 𝑟3

∗(𝑛): Number of different representations of n as the sumof 3 squares, (n=1 up to 

100000) 

ListPlot[Table[{n,Length[PowersRepresentations[n,3,2]]},{n,1,100000}],

PlotRange->Full,PlotStyle->Black] 

Since everything happens on an n-sphere (here a 2-sphere or spherical surface), spherical 

coordinates (𝑟, 𝜑, 휃), obviously, must be used rather than Cartesian ones (𝑥, 𝑦, 𝑧). The 



Third dimension: spheres and integer lattice points  

164 
 

radius 𝑟 of the sphere remains constant in our investigations, therefore only two degrees 

of freedom remain: the angles 𝜑 and 휃. 

This leads to the tempting idea of interpreting 𝜑  and 휃  as 2-dimensional Cartesian 

coordinates. All interesting patterns on the spherical surfaces can now be seen as two-

dimensional representations: 

 

Figure 88. Lattice points of the surface of a sphere where 𝑟2 =  1001, angles of the spherical 
coordinates interpreted as 2-dimensional Cartesian coordinates (same colour indicates identical 
points with respect to mirror operations) 

 

Figure 89. Same as above, however 𝑟2 = 11! (Mathematica programs in the Appendix)  
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9.2.1 FORMULAE AND PROPERTIES 

We restrict ourselves to the function 𝑟3(𝑛), which calculates the number of lattice points 

in 3-dimensional space lying on the surface of a sphere with radius √𝑛. For the function 

𝑟3
∗(𝑛), which calculates the number of different, positive grid points, such that: 

0 ≤ 𝑛1 ≤ 𝑛2 ≤ 𝑛3 and 𝑛1
2 + 𝑛2

2 + 𝑛3
2 = 𝑛, see e.g. note.48 

The generating function of 𝑟3(𝑛) is the elliptic Jacobi 𝜗3(𝑛) function raised to a power 

of 3: 

∑𝑟3(𝑛)𝑥
𝑛 =

∞

𝑛=0

𝜗3
3(𝑥) = 1 + 6𝑥 + 12𝑥2 + 8𝑥3 + 6𝑥4 + 24𝑥5 +⋯ (141) 

 

Explicit formulae: 

𝑟3(𝑛) = {
24ℎ(−𝑛), if 𝑛 ≡ 3 (mod 8)

12ℎ(−4𝑛), if 𝑛 ≡ 1,2,5,6 (mod 8)
0, if 𝑛 ≡ 7 (mod 8)

} (142) 

(with ℎ(𝑛) being the ‘class number‘49 of 𝑛). 

The ‘Three-squares theorem’ of C. F. Gauss is worth mentioning: 

for each natural integer number 𝒏 that can be represented as a sum of 3 squares 

(𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐 = 𝒏,𝒏, 𝒙, 𝒚, 𝒛 ∈ ℕ), the following obtains: 

𝒏 = 𝟒𝒌𝒎 where 𝟒 ∤ 𝒎 𝐚𝐧𝐝 𝒎 ≢ 𝟕 𝒎𝒐𝒅 𝟖 

  

 
48 http://mathworld.wolfram.com/SumofSquaresFunction.html 
49 https://en.wikipedia.org/wiki/Class_numberl 

http://mathworld.wolfram.com/SumofSquaresFunction.html
https://en.wikipedia.org/wiki/Class_numberl


Fourth dimension: hyperspheres and integer lattice points on ‘glomes‘  

166 
 

9.3 FOURTH DIMENSION: HYPERSPHERES AND INTEGER LATTICE 
POINTS ON ‘GLOMES ‘ 

In the same way as in three-dimensional space, we are searching for lattice points in a 

Cartesian coordinate system that lie on the ‘surface’ of a hypersphere. The number of 

these possible lattice points that are touched by the surface of the hypersphere depends 

heavily on the radius of the hypersphere. We will denote this ‘surface’ of the hypersphere 

in the following as "glome" and thus stick to the general language usage. Let us suppose 

that we increase the radius of the hypersphere continuously, then our glome will run 

through the lattice points of our four-dimensional coordinate system. Our interest now is 

directed to the lattice points that lie exactly on the glome. Here are a few examples: 

(here, the author would have liked to have shown a few examples, but unfortunately it is 

not so easy to visualize four-dimensional objects. There is, however, a trick to doing so, 

see below). 

Let us for the moment remain in the abstract, mathematical space. 

In 3-dimensional space, some values 𝑟2 always existed for which the equation 𝑥2 + 𝑦2 +
𝑧2 = 𝑟2 had no solutions (and therefore no corresponding lattice points). In the four-

dimensional domain, this is no longer the case: for every integer 𝑟2 (that is, every natural 

number), the equation 𝑥2 + 𝑦2 + 𝑧2 + 𝑡2 = 𝑟2  has integer solutions! Each natural 

number can be expressed as the sum of four squares. This is the famous theorem of 

Lagrange from the year 1770. 

The function that calculates the number of integer lattice points on a glome ('surface' of a 

four-dimensional hypersphere) is in mathematical literature denoted as 𝑟4(𝑛). We denote 

the number of different positive lattice points such that 0 ≤ 𝑛1 ≤ 𝑛2 ≤ 𝑛3 ≤ 𝑛4  and 

𝑛1
2 + 𝑛2

2 + 𝑛3
2 + 𝑛4

2 = 𝑛  

as 𝑟4
∗(𝑛) 

All function values of 𝑟4(𝑛) are divisible by 8. The first 50 values read: 

{8,24,32,24,48,96,64,24,104,144,96,96,112,192,192,24,144,312,160,144,2

56,288,192,96,248,336,320,192,240,576,256,24,384,432,384,312,304,480,4

48,144,336,768,352,288,624,576,384,96,456,744} 

Mathematica: 

SquaresR[4,Range[50]] 

 

The 8 solutions for 𝑟2 = 3 read: 

{{1,-1,-1,0},{1,1,-1,0},{-1,0,-1,-1},{-1,-1,0,1},{1,1,0,1},{1,-

1,0,1},{-1,0,1,1},{0,1,-1,-1}} 

Mathematica: 

FindInstance[x^2+y^2+z^2+t^2==3,{x,y,z,t},Integers,8] 

 

These solutions can be created from each other mutually by permutations or symmetrical 

mirroring. The number of genuinely different solutions in this case is 1: 
 

{{0,1,1,1}} 
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Mathematica: 

PowersRepresentations[3,4,2] 

 

The first 50 values of 𝑟4
∗(𝑛) read: 

{1,1,1,2,1,1,1,1,2,2,1,2,2,1,1,2,2,3,2,2,2,2,1,1,3,3,3,3,2,2,2,1,3,4,2

,4,3,3,2,2,3,4,3,2,4,2,2,2,4,5} 

 

Mathematica: 

Table[Length[PowersRepresentations[i,4,2]],{i,1,50}] (*or:*) 

a[n_]:=If[n<0,0,Sum[Boole[n==i^2+j^2+k^2+l^2],{i,0,Sqrt[n]},{j,0,i},{k

,0,j},{l,0,k}]];  

Table[a[n],{n,1,50}] 

 

 

Here are two graphs of 𝑟4(𝑛): 

 

Figure 90. 𝑟4(𝑛):  Number/8 of possible representations of n as the sum of 4 squares. Values 

located at prime number positions are marked in red 

Mathematica: 

Show[ListLinePlot[Table[{n,SquaresR[4,n]/8},{n,1,150}], 

InterpolationOrder->0],ListPlot[ 

Table[{Prime[n],SquaresR[4,Prime[n]]/8},{n,1,PrimePi[150]}], 

PlotStyle->{Red,PointSize[0.01]}],Plot[x+1,{x,0,150}]] 
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Figure 91. 𝑟4(𝑛): number/8 of representations of n as the sum of 4 squares (up to 100000) 

Mathematica:  

ListPlot[ParallelTable[{n,SquaresR[4,n]/8},{n,1,100000}], 

PlotRange->Full,PlotStyle->Black] 

 

It can be clearly seen from Figure 90 that all values of 𝑟4(𝑛) lie on a straight line when 𝑛 

is a prime number, see Formula (137). This phenomenon occurs only in the fourth 

dimension. Neither in the lower dimensions nor in higher dimensions can such a simple 

relationship between primes and the number of lattice points on n-spheres be observed. 

 

Here are a few plots of 𝑟4
∗(𝑛): 
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Figure 92. 𝑟4

∗(𝑛):  number of different representations of n as the sum of four squares (n=1 up to 
500) 

Mathematica: 

ListLinePlot[Table[Length[PowersRepresentations[i,4,2]],{i,1,500}], 

PlotLegends->Automatic,PlotRange->All] 

 

 

Mathematica: 

ListPlot[ParallelTable[{n,Length[PowersRepresentations[n,4,2]]},{n,1,5

0000}],PlotRange->Full,PlotStyle->Black] 
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From the graphs for 𝑟4(𝑛) and 𝑟4
∗(𝑛), we see that the asymptotic behavior of both 

functions is linear. 

As in the last section for three-dimensional spheres, we use a trick to reduce the number 

of dimensions by one dimension by using hypersphere coordinates (𝑟, 𝜑, 휃, 𝜓) instead 

of Cartesian coordinates(𝑥, 𝑦, 𝑧, 𝑡) The radius 𝑟 of the hypersphere remains constant and 

only three degrees of freedom remain: the angles 𝜑, 휃 and 휃. 𝛷, 휃 and 𝜓 are interpreted 

as three-dimensional Cartesian coordinates. Thus all interesting patterns on the hyper-

spherical surfaces can also be seen as a three-dimensional picture. 

The colour representation was chosen such that the same (absolute) 𝑥, 𝑦, or 𝑧 
coordinates of a point represent the same R G B triple in the RGB colour space. 

 

Example 1: 𝑟2 =1001. 

Example 2: 𝑟2 =10007  

 

Animations (views on the surface of the 4-dimensional spheres) can be found on the 

enclosed computer CD, or as a Mathematica program for the animations in the Appendix. 

 

 

 
Figure 93. Example 1: lattice points on the 3-sphere of a 4 dim. sphere where r^2=1001 

(Mathematica programs can be found in the Appendix). 
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The hidden structures appear only when viewed parallel to the coordinate axes: 

 

Figure 94. Six views of Figure 93: right/left, front/back, above/below 

Mathematica: 

grTable = { 

Show[obj,ViewPoint->{Infinity,0,0},ImageSize->Medium], 

Show[obj,ViewPoint->{-Infinity,0,0},ImageSize->Medium], 

Show[obj,ViewPoint->{0,Infinity,0},ImageSize->Medium], 

Show[obj,ViewPoint->{0,-Infinity,0},ImageSize->Medium], 

Show[obj,ViewPoint->{0,0,Infinity},ImageSize->Medium], 

Show[obj,ViewPoint->{0,0,-Infinity},ImageSize->Medium] 

} 
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Figure 95. Example 2: lattice points on the 3-sphere of a 4 dim. sphere where r^2=10007 
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Figure 96. Two views of the illustration above 

In the view of the author, the resulting images of the four-dimensional spherical surfaces 

are most attractive when the square of the spherical radius is a prime number. For them, 

the ratio between accumulations of points and empty spaces is the most balanced. This is 



Fourth dimension: hyperspheres and integer lattice points on ‘glomes‘  

174 
 

also demonstrated by Figure 90. The density of the spherical points on 3-spheres is for 

primes always in the middle range. 

 

9.3.1 FORMULAE AND PROPERTIES 

As in the case of the lower dimensions, we restrict ourselves to the function 𝑟4(𝑛), which 

calculates the number of lattice points in the 4-dimensional space that lie on a hypersphere 

surface (glome) with radius √𝑛. For the function 𝑟4
∗(𝑛), which calculates the number of 

different positive grid points, such that: 0 ≤ 𝑛1 ≤ 𝑛2 ≤ 𝑛3 ≤ 𝑛4  and 𝑛1
2 + 𝑛2

2 + 𝑛3
2 +

𝑛4
2 = 𝑛, please refer to other relevant sources. 

The generating function of 𝑟4(𝑛) is the elliptic Jacobi 𝜗3(𝑛) function raised to the 4th 

power: 

 

∑𝑟4(𝑛)𝑥
𝑛 =

∞

𝑛=0

𝜗3
4(𝑥) = 1 + 8𝑥 + 24𝑥2 + 32𝑥3 + 24𝑥4 + 48𝑥5 +⋯ (143) 

 

  

Explicit formulae: 

𝑟4(𝑛) = {

8𝜎1(𝑛), if 𝑛 odd

24𝜎0(𝑛), if 𝑛 even,with 𝜎0(n) = ∑ 𝑑

2∤𝑑,𝑑|𝑛

  (144) 

This can be written somewhat more easily: 

𝑟4(𝑛) = {
 8𝜎1(𝑛), if 4 ∤ 𝑛 (𝑛 not divisable by 4)

 8𝜎1(𝑛) − 32𝜎1 (
𝑛

4
) , otherwise (𝑛 divisable by 4)

 (145) 

or 

𝑟4(𝑛) = 8 ∑ 𝑑

𝑑|𝑛,4∤𝑑

 (146) 
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10 ABOUT OCRONS AND GOCRONS: SHADES OF GÖDEL 

10.1 WHAT ARE OCRONS AND GOCRONS? 

The acronym "OCRON" stands for "Operator Chain Representation Of Number". An 

OCRON is a representation method for natural numbers 𝑛 > 0 that works procedurally 

(similar to a small computer program written in a programming language with very simple 

instructions) and operators that can be executed sequentially from left to right. For the 

processing of the operator sequence (= OCRON), we use the so-called "Polish notation", 

which works with a stack: numbers and basic symbols appearing in the list are simply 

'pushed' onto the stack. Operators process the lowest two stack entries getting a single 

value and let the stacked entries above slip down one position. The stack can become 

arbitrarily large in the course of processing an OCRON, but in the end only one entry 

should remain: the value of the OCRON. Thus, any number can be converted into an 

OCRON. An OCRON, in contrast to a normal sum representation with number systems, 

describes not only the value of the number but also the procedure by means of which the 

number is generated. 

Of course, the converse does not apply: not every string consisting of symbols from the 

symbol stock is a number. The logicians speak of ‘well-formed’ and ‘non-well-formed’ 

character strings. For most types of OCRONs, there are more non-well-formed OCRONs 

than well-formed OCRONs. Below, however, we will present methods that make possible 

the interpretation non-well-formed OCRONs and the assignment of numbers to them. 

There are also OCRON systems (see ‘prime OCRONs’) which, by their very nature, 

always lead to well-formed operator sequences. These most interesting systems represent 

a bijective mapping from the natural numbers onto a set of symbols that is unambiguously 

reversible. We anticipate here (what is explained in detail below) that a GOCRON is a 

‘Gödelized’ OCRON, freely following the method of the brilliant Austrian mathematician 

Kurt Gödel, who invented this method (Gödel assigned mathematical assertions, 

theorems, or formulae to natural numbers), we will assign a numerical value to each 

OCRON chain. This process is called ‘Gödelization’. It describes a change in the ‘level 

of meaning’: from a procedural meaning to an arithmetical meaning. In contrast to Gödel, 

who used ‘Gödelization’ only hypothetically and theoretically (for the proof of his 

‘theorem of incompleteness’), we will here work quite concretely with ‘Gödelized’ 

numbers. 

First, we will repeat the simple number representations and show that they can also be 

interpreted as OCRONs. 
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10.1.1 REPRESENTATION BY SUMS IN NUMERAL SYSTEMS 

First, a brief overview of number representations is provided here. The usual methods 

that are suitable for processing natural numbers in a computer are: 

the sum representation in numeral systems with a suitable base: the base is typically 10 

(decimal system), 2 (binary system), 16 (hexadecimal system), or 8 (octal system). Let 𝑏 

be the base, 𝑧𝑖 < 𝑏 the 'digits', and 𝑁 the highest occurring power to the base 𝑏 of the 

numeral representation. Then every natural number 𝑛 ≥ 0 can be written as: 

𝑛 =∑𝑧𝑖

𝑁

𝑖=0

𝑏𝑖 , where 𝑁 = ⌊(𝑙𝑛 (𝑛))/𝑙𝑛 𝑏 ⌋ (147) 

 

Both the digits 𝑧𝑖 and the exponents 𝑖 are represented in the same sum representation with 

the same base 𝑏, so that we have a total representation with 𝑏 + 3 symbols (namely the 𝑏 

numeral symbols as well as the three operator symbols ′+′,′∗′ and ′^′  (addition, 

multiplication and exponentiation). This is a mixed representation, since all three 

operators occur. Generally, the digits, base and exponents will also be represented in the 

same system of numbers. We can, however, get a ‘pure’ representation, consisting only 

of the operators ′+′ and ′^′ , by adding the terms 𝑧𝑖𝑏
𝑖  as ( 𝑏𝑖 + 𝑏𝑖 + 𝑏𝑖 +  …) and 

discarding terms with ‘0’.  This leads to a sum representation that uses only the two 

operators ′+′ and ′^′. Here, we give the base its own symbol 𝑏. This has the advantage 

that the symbol ′0′ no longer appears in the reduced representation, in which only the 

individual digits and the operators actually occur. 

The minimum number of different symbols for the sum representation with the 

operators ′+′,′∗′ 𝐚𝐧𝐝 ′^′ is five (binary system), the maximum number 𝒃 + 𝟑 (in the 

𝒃 system). 

The minimum number of different symbols for the sum representation with the 

operators ′+′𝐚𝐧𝐝 ′^′ is four (binary system), the maximum number 𝒃 + 𝟐 (in the 𝒃 

system). 

Example: the number 𝟏𝟐𝟖𝟎𝟎𝟎𝟎0=𝟏𝟏𝟎𝟎𝟎𝟎𝟏𝟏𝟎𝟏𝟎𝟏𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎binary 

(using the decimal system, with operators ′+′,′∗ ′ and ′^′):  

𝟖 ∗ 𝟏𝟎𝟓 + 𝟐 ∗ 𝟏𝟎𝟔 + 𝟏𝟎𝟕 
or in operator-notation (stack method50, b=10): 

8b5^*2b6^*+b7^+ 

 

(decimal system, with operators ′+′ and ′^′):  

𝟏𝟎𝟓 + 𝟏𝟎𝟓 + 𝟏𝟎𝟓 + 𝟏𝟎𝟓 + 𝟏𝟎𝟓 + 𝟏𝟎𝟓 + 𝟏𝟎𝟓 + 𝟏𝟎𝟓 + 𝟏𝟎𝟔 + 𝟏𝟎𝟔 + 𝟏𝟎𝟕 
or in operator notation (stack method, b=10): 

b5^b5^+b5^+b5^+b5^+b5^+b5^+b5^+b6^+b6^+b7^+ 
 

 
50 Stack method: inverse Polish notation, ‘b’ and ‘1’ will be pushed on the stack ‘+’ and ‘^’ evaluate 
and the two lowest stack values by applying the actual operator, write the result in to the lowest 
stack register and decrement the stack by 1. 
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(binary system, with operators ′+′,′∗ ′ and ′^′):  
1 ∗ 212 + 1 ∗ 214 + 1 ∗ 216 + 1 ∗ 217 + 1 ∗ 222 + 1 ∗ 223 (𝑑𝑒𝑐𝑖𝑚𝑎𝑙)

= 1 ∗ 101∗10
11+1∗1010 + 1 ∗ 101∗10

11+1∗1010+1∗101 + 1 ∗ 101∗10
100
+ 1 ∗ 101∗10

100+1 + 1

∗ 101∗10
100+1∗1010+1∗101 + 1 ∗ 101∗10

100+1∗1010+1∗101+1(𝑏𝑖𝑛𝑎𝑟𝑦) 

Obviously the multiplication by 1 is redundant, so we finally get: 

(binary system, with operators ′+′ and ′^′):  

𝟏𝟎𝟏𝟎
𝟏𝟎+𝟏+ 𝟏𝟎𝟏𝟎 + 𝟏𝟎𝟏𝟎

𝟏𝟎+𝟏+ 𝟏𝟎𝟏𝟎+𝟏𝟎 + 𝟏𝟎𝟏𝟎
𝟏𝟎𝟏𝟎  + 𝟏𝟎𝟏𝟎

𝟏𝟎𝟏𝟎+𝟏 + 𝟏𝟎𝟏𝟎
𝟏𝟎𝟏𝟎+𝟏𝟎𝟏𝟎+𝟏𝟎 + 𝟏𝟎𝟏𝟎

𝟏𝟎𝟏𝟎+𝟏𝟎𝟏𝟎+𝟏𝟎+𝟏 

or using the operator notation (stack method, b=10): 

bbb1+^bb^+^bbb1+^bb^+b+^+bbbb^^^+bbbb^^1+^+bbbb^^bb^+b+^+bbbb^^bb^+b+1+^+ 

 

The method of reducing the description of a number to a small number of symbols (e.g. 

1,2, ′+′,′∗ ′ and ′^′) was described back in 1944 by the British mathematician Reuben 

Louis Goodstein51 when he was studying the ‘Goodstein sequence’52 (named after him). 

This sequence has interesting properties, since its terms reach unimaginably large values 

and (according to the theorem of Goodstein) returns to the value 0 after a finite number 

of steps. Some mathematicians argue that this theorem belongs to Gödel's category of 

unprovable statements: true, but not provable! 

 

Note that in this example the 0 is no longer present, so that in the case of the binary system 

we have a pure sum representation of a number with only two operators (, +’ and '^') and 

the symbols 1 and b, thus only 4 symbols. This sum representation is, of course, 

ambiguous: because of the commutativity of the operators, '+' and '*', the order can be 

changed at many positions in the sequence. Let us summarize for the sake of 

completeness, what is in any case trivial: 

 

The sum representation within a numeral system with a base 𝒃 and its powers can 

be written as a sequence of operators and symbols. The fewer the symbols used, the 

longer the sequence and the smaller the base of the numeral system. Representations 

with two (‘+' and '^') and three (, +', ’*’ and '^') operators are possible. 

 

  

 
51 R.L. Goodstein(1945), „Function Theory in an Axiom-Free Equation Calculus". Proceedings of the 
London Mathematical Society 
52  https://de.wikipedia.org/wiki/Goodstein-Folge 

https://de.wikipedia.org/wiki/Goodstein-Folge
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10.1.2 PRODUCT REPRESENTATION USING PRIME FACTORS 

The product representation works with prime factor decomposition. Every natural 

number 𝑛 > 1 can be written as the product of prime factors 𝑝𝑛𝑖, which occur raised to 

the power 𝑒𝑖. Let 𝑁 be the number of different occurring prime factors. 

𝒏 =∏ 𝒑𝒏𝒊
𝒆𝒊

𝑵

𝒊=𝟏

, 𝐰𝐡𝐞𝐫𝐞 𝑵 = 𝝎(𝒏) (148) 

 
Note: 𝜔(𝑛) behaves asymptotically ≈ ln ln 𝑛 and can be calculated: 

 

𝜔(𝑛) = ln ln 𝑛 + 𝐵1 +∑(−1 +∑
𝛾𝑗

𝑗!

𝑘−1

𝑗=0

)

∞

𝑘=1

(𝑘 − 1)!

(ln 𝑛)𝑘
 (149) 

 

In which 𝐵1 is the Mertens constant 0.2614972128 and 𝛾𝑗 are the Stieltjes constants. 𝐵′1 can also be used 

to calculate the variance var(𝜔(𝑛)): 

var(𝜔(𝑛)) = ln ln 𝑛 + 𝐵′1 +∑
𝑐𝑘

(ln 𝑛)𝑘

∞

𝑘=1

 

𝐵′1 = 𝐵1 − 𝑡 −
𝜋2

6
= 1.83568427, 𝑡 = 𝑃(2)

= ∑
1

𝑝𝑘
2
 (Prime zeta function) = 0.452247

∞

𝑘=1

 

 

(150) 

Here 𝑐1 = 1.0879488865, and 𝑐2 = 3.3231293098 

In Mathematica 𝜔(𝑛)  and Ω(n) are implemented as arithmetical functions 

PrimeNu[n] and PrimeOmega[n]. 

For the representation of the 𝑝𝑛𝑖and 𝑒𝑖, we can again choose: generally, the 𝑝𝑛𝑖 and 𝑒𝑖 are 

represented in the summation representation of a number system to a base b. Thus we 

have a mixed number representation: e.g. 𝑝𝑛𝑖  and 𝑒𝑖  in the decimal system as a 

summation representation, but the total number 𝑛 as a product representation. However, 

we can also achieve here a 'pure' representation (in which we mean by ‘pure’: in such a 

way that the representation contains only ‘ ∗ ’  and ′^′  operators, but not the ′ + ′ 
operator). This leads us again to the idea of the 'OCRONs'. Suppose we restrict ourselves 

to the first 𝑁 prime numbers. The next step is to convert the 𝑛𝑖 (not the 𝑝𝑛𝑖!) and 𝑒𝑖 into 

the product representation. Here, however, arises the phenomenon of recurrence, since 

the product representation of 𝑛𝑖 or 𝑒𝑖 can again contain 𝑝𝑛𝑖 and 𝑒′𝑖, which in turn can be 

written in a normal sum representation or as product representation. The recursive process 

of the transformation from sum representations to product presentations can be continued 

until only the first 𝑁  prime numbers still occur. Then we have a pure product 

representation of a number in which only the first 𝑁 prime numbers occur (also in the 

powers of the prime numbers). 
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Example: the number 12800000 

• Using product representation with the first 3 prime numbers (𝑝1 = 2, 𝑝2 = 3, 𝑝3 = 5), 
operators ′ ∗ ′ and ′^′:  

𝟏𝟐𝟖𝟎𝟎𝟎𝟎𝟎 = 𝟐𝟏𝟐 ∗ 𝟓𝟓 = 𝟐𝟐
𝟐∗𝟑 ∗ 𝟓𝟓 = 𝒑𝟏

𝒑𝟏
𝒑𝟏∗𝒑𝟐 ∗ 𝒑𝟑

𝒑𝟑 

or in operator notation (stack method): 
222^3*^55^* 

• Using product representation with the first 2 prime numbers (𝑝1 = 2, 𝑝2 = 3), 

operators ′ ∗′ and ′^′ :  

𝟏𝟐𝟖𝟎𝟎𝟎𝟎𝟎 = 𝒑𝟏
𝒑𝟏
𝒑𝟏∗𝒑𝟐 ∗ 𝒑𝟑

𝒑𝟑 = 𝒑𝟏
𝒑𝟏
𝒑𝟏∗𝒑𝟐 ∗ 𝒑𝒑𝟐

𝒑𝒑𝟐  

or in operator notation (stack method): 

222^3*^(𝒑𝟑)( 𝒑𝟑)^* 

This idea of further reducing the number of primes required for representation leads us to 

OCRONs with a prime operator in the next chapter. The representation by means of 

indices, e.g. 𝑝𝑝𝑝3  is confusing and unclear, therefore we introduce a so-called prime 

operator 𝑃, which simply yields the nth prime number when applied to 𝑛. 

10.2 OCRONS WITH PRIME OPERATORS 

We continue to implement the idea of the product representation and replace all the values 

occurring in the bases and exponents recursively by smaller, simpler prime factor 

decompositions resulting in indices of (indices of … etc.) prime numbers, until we arrive 

at the last basic prime number 𝑝1 = 2 , which cannot be further reduced. This last, 

‘irreducible' prime number 2 is called the ′2′-operator. Let us continue the last example 

in the last chapter: 

𝟏𝟐𝟖𝟎𝟎𝟎𝟎𝟎 = 𝒑𝟏
𝒑𝟏
𝒑𝟏∗𝒑𝟐 ∗ 𝒑𝟑

𝒑𝟑 = 𝒑𝟏
𝒑𝟏
𝒑𝟏∗𝒑𝟐 ∗ 𝒑𝒑𝟐

𝒑𝒑𝟐 = 𝒑𝟏
𝒑𝟏
𝒑𝟏∗𝒑𝒑𝟏 ∗ 𝒑𝒑𝒑𝟏

𝒑𝒑𝒑𝟏 = 

𝟐𝟐
𝟐∗𝒑𝟐 ∗ 𝒑𝒑𝟐

𝒑𝒑𝟐  

or in operator notation (stack method, operators: 2, 𝑃,∗ and ^): 

𝟏𝟐𝟖𝟎𝟎𝟎𝟎𝟎 = 𝟐𝟐𝟐^𝟐𝐏 ∗ ^𝟐𝐏𝐏 ∗ 𝟐𝐏𝐏^ ∗ 

The operator notation is much easier. Note that the ′2′ operator does nothing else but 

'push' the ′2′ on the stack; the 𝑃-operator simply calculates the 𝑥th prime number (with 𝑥 

being the actual stack value). The ′ ∗ ′ and ′^′ operators work as usual and process the two 

lowest stack entries, write the result to the lowest stack cell, and let all stack records above 

slip down one position. 

Here is a simple example using the number 1763: 1763 is the product of the prime 

numbers 41 and 43. We use the 𝑃-operator in slightly different notation: 𝑃(𝑛) yields the 

𝑛th prime number. Instead of 1763 =  41 ∗  43 we write: 

1763 = 𝑃(13) ∗ 𝑃(14). Well, we know that 13 is the 6th prime number and 14 = 2 ∗
7 = 2 ∗ 𝑃(4). 
Thus we can write: 𝑃(13)  =  𝑃(𝑃(6)) and 𝑃(14) = 𝑃(2 ∗ 𝑃(4)) etc. … 

(possible exponents are decomposed in the same way as the bases…). Therefore: 
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1763 =  41 ∗ 43 =  𝑃(13) ∗ 𝑃(14)  =  𝑃(𝑃(6))  ∗  𝑃(2 ∗ 𝑃(4))  
=  𝑃(𝑃(2 ∗ 𝑃(2))) ∗ 𝑃((2 ∗ 𝑃(2^2))  = 

 𝑃(𝑃(2 ∗ 𝑃(2))) ∗ 𝑃((2 ∗ 𝑃((2)^2)), or using operator notation with inverse Polish 

notation: 

𝟏𝟕𝟔𝟑 = 𝟐𝟐𝑷 ∗ 𝑷𝑷𝟐𝟐𝟐^𝑷 ∗ 𝑷 ∗ 
 

In their 'simplicity', these operator sequences bear a certain similarity to the programming 

language 'Brain-Fuck'.53 

Among the OCRON sequences, there are 'well-formed' and 'non-well-formed' sequences. 

The well-formed parts can be processed without any problem. The non-well-formed, for 

example ^^ 𝐩 ∗  𝟐𝟐𝟐, have no meaning (at present). 

 

Note: OCRONs of types 3 to 5 (with * and ^ operators) can be redundant and yet still 

well-formed. The redundancy occurs because there is a certain ambiguity in arithmetic 

representations. OCRONs that cannot be shortened, we call 'minimal' OCRONs. Here is 

an example: 

Redundant (arithmetically): 2 ∗ 2 ∗ 5 ∗ 5 ∗ 2.  Redundant (OCRON:) 22*52^*2* 

Minimal (arithmetically): 23 ∗ 52.   Minimal (OCRON:) 23^52^* 

 

OCRONs are not unique. They can have different elements in a different order, but still 

give the same value. This property is called "degeneration". This comes from the 

commutativity of the calculations performed. OCRONs can easily be multiplied by 

simply hooking the OCRON chains together and appending a ′ ∗ ′ operator: 

 

Example 𝟓 ∗ 𝟕 = 𝟑𝟓  𝟐𝑷𝑷 ⋅ 𝟐𝟐^𝑷 = 𝟐𝑷𝑷𝟐𝟐^𝑷 ∗ 
Example 𝟔 ∗ 𝟏𝟐 = 𝟕𝟐 𝟐𝑷𝟐 ∗ ⋅  𝟐𝑷𝟐𝟐^ ∗= 𝟐𝑷𝟐 ∗ 𝟐𝑷𝟐𝟐^ ∗∗= 𝟐𝑷𝟐^𝟐𝟐𝑷^ ∗ 
 

Note: the transforming (or simplifying) of the redundant OCRON “2𝑃2 ∗  2𝑃22 ^  ∗∗” 

into the minimal OCRON "2𝑃2 ^ 22𝑃 ^  ∗" by typographical means, however, is difficult 

and still an unsolved problem. More about this in Chapter 10.3. 

10.2.1 OCRONS WITH THE PRIME “P” AND “*” OPERATORS 

The simplest OCRON obtained from the prime factor decomposition of a number 

contains three operators: 2, 𝑃,∗ . As discussed in the last chapter, a recurring 

decomposition of the occurring bases and exponents yields an OCRON consisting of three 

symbols. We call it the OCRON type ′3′. Each well-formed sequence begins with a ′2′ 
and ends with ′ ∗ ′ or ′𝑃′ (i.e. one can immediately see whether a type 3 OCRON is a 

prime number or a composite number). Here is an example: the first 50 natural numbers 

in OCRON type 3 representation: 

  

 
53 https://en.wikipedia.org/wiki/Brainfuck 

https://en.wikipedia.org/wiki/Brainfuck
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Table 13. Numbers 2 to 50 in OCRON type 3 format 

n OCRON type 3 n OCRON type 3 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

- 

2 

2P 

22* 

2PP 

2P2* 

22*P 

22*2* 

2P2P* 

2PP2* 

2PPP 

2P2*2* 

2P2*P 

22*P2* 

2PP2P* 

22*2*2* 

22*PP 

2P2P*2* 

22*2*P 

2PP2*2* 

22*P2P* 

2PPP2* 

2P2P*P 

2P2*2*2* 

2PP2PP* 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

2P2*P2* 

2P2P*2P* 

22*P2*2* 

2PP2*P 

2PP2P*2* 

2PPPP 

22*2*2*2* 

2PPP2P* 

22*PP2* 

22*P2PP* 

2P2P*2*2* 

2P2*2*P 

22*2*P2* 

2P2*P2P* 

2PP2*2*2* 

2P2*PP 

22*P2P*2* 

22*P2*P 

2PPP2*2* 

2PP2P*2P* 

2P2P*P2* 

2PP2P*P 

2P2*2*2*2* 

22*P22*P* 

2PP2PP*2* 

 

OCRONs of type 3 do not have a power operator and are therefore not as interesting. For 

high powers, OCRONs of type 3 become unwieldy. Just think of large composite numbers 

or powers of 2, such as 2𝟓𝟕𝟖𝟖𝟓𝟏𝟔𝟏, whose OCRON representation would then have a 

length of millions of characters! 

10.2.1.1 DEGENERATION OF TYPE 3 OCRONS 

By ‘degeneration’ we understand the fact that there are generally several OCRON 

representations for a unique number 𝑛. The converse does not apply, of course. To an 

OCRON there is only one unique number 𝑛. This degeneration increases very fast with 

𝑛, as the following graphic shows: 
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Figure 97. Degeneration of well-formed OCRON3s up to n=768 (logarithmic plot)  

Mathematica: 

data = 

Import["primes/data/ocron3_wellformed_Degeneration_OK_upto_768.txt","C

SV"] 

ListLogPlot[data,PlotStyle->Red,AxesLabel->Automatic,Filling-

>Axis,PlotMarkers->Automatic,PlotRange->All] 

 

10.2.2 OCRONS WITH THE PRIME “P”, “*” AND “^” OPERATORS 

We want to pay most attention to this type of OCRON. We call this OCRON a ‘type 4 

OCRON’, since it contains the 4 operators: 2, 𝑃,∗, ^. For the type 4 OCRONs, we have in 

addition a power operator. It reflects the prime factor decomposition of a number. 

Each well-formed sequence begins with a ′2′ and ends with ′ ∗ ′, ′^′, or ′𝑃′ (i.e. one can 

immediately see if an OCRON is a prime number, a composite number, or a power 

number). Here is an example: the first 50 natural numbers in OCRON type 4 format: 
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Table 14. The numbers 2 to 49 in OCRON type 4 format 

n OCRON type 4 n OCRON type 4 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

2 
2P 
22^ 
2PP 
22P* 
22^P 
22P^ 
2P2^ 
22PP* 
2PPP 
22^2P* 
22P*P 
222^P* 
2P2PP* 
222^^ 
22^PP 
22P2^* 
22P^P 
22^2PP* 
2P22^P* 
22PPP* 
2P2^P 
22P^2P* 
2PP2^ 

26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 

222P*P* 
2P2P^ 
22^22^P* 
22PP*P 
22P*2PP* 
2PPPP 
22PP^ 
2P2PPP* 
222^PP* 
2PP22^P* 
22^2P2^* 
22^2P*P 
222P^P* 
2P22P*P* 
22P^2PP* 
22P*PP 
22P*22^P* 
222^P*P 
22^2PPP* 
2P2^2PP* 
22P2^P* 
2P2PP*P 
222^^2P* 
22^P2^ 

 

OCRONs of type 4 provide a compact representation of very large values. By way of 

example, here is a table of the first Mersenne numbers: 

Table 15. Mersenne numbers, as well as the exponents in OCRON type 4 representation  

𝑛 Mersenne 
prime 
exponent p 

Mersenne number 𝑀𝑝 = 2
𝑃-1 OCRON4(p) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

2 
3 
5 
7 
11 
13 
17 
19 
23 
29 
31 
37 
41 
43 
47 
53 

3 
7 
31 
127 
2047 
8191 
131071 
524287 
8388607 
536870911 
2147483647 
137438953471 
2199023255551 
8796093022207 
140737488355327 
9007199254740991 

2 
2P 
2PP 
22^P 
2PPP 
22P*P 
22^PP 
22P^P 
2P2^P 
22PP*P 
2PPPP 
22^2P*P 
22P*PP 
222^P*P 
2P2PP*P 
222^^P 
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17 
18 
19 
20 
21 
22 
23 
24 

59 
61 
67 
71 
73 
79 
83 
89 

576460752303423487 
2305843009213693951 
147573952589676412927 
2361183241434822606847 
9444732965739290427391 
604462909807314587353087 
9671406556917033397649407 
618970019642690137449562111 

22^PPP 
22P2^*P 
22P^PP 
22^2PP*P 
2P22^P*P 
22PPP*P 
2P2^PP 
22P^2P*P 

 

Table 16. Mersenne numbers in OCRON type 4 format (prime numbers in red) 

𝑛  p Mersenne number 
𝑀𝑝 = 2

𝑃 − 1 
OCRON4(𝑀𝑝) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

2 
3 
5 
7 
11 
13 
17 
19 
23 
29 
31 
37 
41 
43 
47 
53 
59 
61 
67 
71 
73 
79 
83 
89 

3 
7 
31 
127 
2047 
8191 
131071 
524287 
8388607 
536870911 
2147483647 
137438953471 
2199023255551 
8796093022207 
140737488355327 
9007199254740991 
576460752303423487 
2305843009213693951 
147573952589676412927 
2361183241434822606847 
9444732965739290427391 
604462909807314587353087 
9671406556917033397649407 
618970019642690137449562111 

2P 
22^P 
2PPPP 
2PPPPP 
2P2^P22P^2P*P* 
22^2PP2PPP*P*P 
22P^2P*22P2^*P*PP 
22PP*22^2P2P^*PP*P 
2P2PP*P2PP2^P2P22P*P*P*P* 
2P22^PP*P2PP22^2P*P*P*22^22PPP*P*P* 
2PP2P*22P^*PP2P2*P2PP*2P2^*P*2PP*P 
2P222^^*P2P2^2*P22^P2*P*22^P2^*2PP2P^*2*P* 
2P2^2*P2P2*P*2*P22^PP2PPP*2P*P2PP2*P*2P2*P*2P*2*P* 
2P2^PPP2PP2*PPP2*P*2PPP2^2*P2PP*P2*P* 
22^P2PP*2*PP22^PP2P2^*22^*P*2PPPP2PP*2P*P2PPP*P2*P* 
2PP2*P2PP*PP22P^P2P*PP22^*P*2PP2*P2PP*22P^*P2P2^P*2P*2*P* 
22^P2*P22^*P222^^*P2P22^P22P^*PP2P2P^P*2P2*PP*2P2*P*2P2^*2*P** 
2PP2P2^2*P*222^P*22PPP*2P2*P2P*P*2P2^2*PP22^P*2P2^*P*P*P*P 
22^22^2P*2PP*22P*P*22P2P^*P*P*P2PP2P^222^P*PP*22P^2PP2^*22^P*22P^PP*P*P* 
2P22P^PP*222P*P*P*P22P*P2P2PP22^P*PPP*P*P*2P2^22^P*2P22P*P*P*2PPP22^PP*P*P* 
2PP22^PP*P22PP^22P^PP*22PPP*P*P*2P2^22PPP*P*2P2P2^^2P22P^PP*P*P*P* 
22P*2PP*22P*P*P2P2PPPP*222^P*P*2PPP22^2P*P*P*P*22^2P*P222^2PP*P*P*22P*2P2^P*222^P*P*P*PP* 
2P22P*P*P2P222^P*P*222P2^*P*P*22P^2P2P^*P*22^2PP2P^*P*222^P*22^P2^P*22P^222P*P*PP*P*P*P* 
?????? 

 

Table 17. Wagstaff prime exponents in OCRON type 4 format (resulting primes in red) 

𝑛 Wagstaff 
prime 
exponent p 

Wagstaff number 
𝑀𝑝=2

𝑃+1

3
 

OCRON4(p) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

2 
3 
5 
7 
11 
13 
17 
19 
23 
29 
31 
37 
41 
43 
47 
53 

5/3 
3  
11  
43  
683  
2731  
43691  
174763  
2796203  
178956971  
715827883  
45812984491  
733007751851  
2932031007403  
46912496118443  
3002399751580331  

2 
2P 
2PP 
22^P 
2PPP 
22P*P 
22^PP 
22P^P 
2P2^P 
22PP*P 
2PPPP 
22^2P*P 
22P*PP 
222^P*P 
2P2PP*P 
222^^P 
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17 
18 
19 
20 
21 
22 

59 
61 
67 
71 
73 
79 

192153584101141163  
768614336404564651  
49191317529892137643 
787061080478274202283 
3148244321913096809131 
201487636602438195784363 

22^PPP 
22P2^*P  
22P^PP 
22^2PP*P 
2P22^P*P 
22PPP*P 

 

Table 18. Wagstaff numbers in OCRON type 4 format (prime numbers in red) 

𝑛 Wagstaff 
prime 
exp. p 

Wagstaff number 
𝑊𝑝=2

𝑃+1

3
 

 

OCRON4(
2𝑃+1

3
) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

2 
3 
5 
7 
11 
13 
17 
19 
23 
29 
31 
37 
41 
43 
47 
53 
59 
61 
67 
71 
73 
79 

5/3 
3  
11  
43  
683  
2731  
43691  
174763  
2796203  
178956971  
715827883  
45812984491  
733007751851  
2932031007403  
46912496118443  
3002399751580331  
192153584101141163  
768614336404564651  
49191317529892137643 
787061080478274202283 
3148244321913096809131 
201487636602438195784363 

- 
2P 
2PPP 
222^P*P 
22^2PPPP*P 
2P22^P*22P^P*P 
22P^22P^22P*P*P*P 
222^22P2P^*P*P*P 
2PP22^2P2^*P*2P22P^P*P*P 
22^PPP222^^2P22^^*22P*P2^*P* 
22^PPP22^22^P*2PPP*22^PP*PP*P 
2PPP2*P2PP*PP2PPP*2P*2*P2PPP2PP2^*P* 
222^^P2P*P2PPP2*P*2P2*P*22^P*2PP*2P*22^*P2P2^PP* 
22^P2P^P2PP2P*P*P2P2*P22^*P2*P*2PPP*2*P 
2PP2P2^*2*P2PP2*P*P2PPP2P*P2*P*2P2^2*P*2P*P2P2^2*PP* 
2PP2P^2*P2P22^*P2P*P*2P*P22^PP2P*P22^P*2P*22^**P22^P22^*P* 
22^P2^2PP2^*22P^*P22^PP*2P*PP2P2*PPP2PPP*2*P*2PPP2P*P2P*P* 
22^222^PP*PP*222^PP*222^P*222^2P*22^2P*P*P*PP*P*P*PP 
22PP*22^22P2P^P*P*P*P222^22P^PP*2P22P^P*222^P*PPP*P*P*PP* 
22^2P*22^PP*2P2^P2P2^PP*P*P222^P*22PP*P*2PP22^PP*P*222^^22P22P*^*P*P*P* 
2P22^P*22P*P*P22^2P*PP22P*222PP*2PPP*P*PP*P*2P2PP*22P2^P*2PP2PPP*P*P*P*P* 
?????? 

 

The lengths of the OCRONs in Mersenne numbers grow approximately proportional to 𝑝: 

 

Figure 98. Lengths of type 4 OCRONs of Mersenne numbers up to 𝑀83 
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Mathematica: 

data={{2,2},{3,4},{5,5},{7,6},{11,14},{13,14},{17,17},{19,18},{23,25},
{29,35},{31,34},{37,42},{41,50},{43,37},{47,51},{53,57},{59,63},{61,62

},{67,72},{71,75},{73,66},{79,89},{83,88}} 

line = Fit[data, {1,x},x] 

Show[ListPlot[data,PlotStyle->Red, AxesLabel->Automatic,Filling-

>Axis,PlotMarkers->Automatic],Plot[line,{x,0,83}]] 

 

If we extrapolate for high Mersenne primes, we expect OCRON lengths of some million 

characters (about three times as long as in decimal representation, but much shorter than 

in binary representation). 

 

The lengths of the OCRONs in Wagstaff numbers also grow approximately proportional 

to p: 

 

Figure 99. Lengths of type 4 OCRONs of Wagstaff numbers up to 𝑊73 

Mathematica: 
{{3,2},{5,4},{7,7},{11,10},{13,14},{17,17},{19,16},{23,24},{29,28},{31

,29},{37,36},{41,48},{43,39},{47,48},{53,58},{59,58},{61,52},{67,57},{

71,71},{73,73}} 

line = Fit[data, {1,x},x] 

Show[ListPlot[data,PlotStyle->Red, AxesLabel->Automatic,Filling-

>Axis,PlotMarkers->Automatic],Plot[line,{x,0,73}]] 

 

If we extrapolate for high Wagstaff numbers to similarly high ranges as the largest 

known Mersenne primes, we also expect OCRON lengths of some million characters. 
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Note that the OCRONs for Mersenne prime numbers incremented by 1 (2𝑝) are only 2 

characters longer than the prime exponent 𝑝 itself! Here is an example: 

The Mersenne prime number 𝑀48 = 2
57885161 − 1  has a decimal representation of 

17425170 digits. Its representation as a type 4 OCRON has an estimated length of 

approximately 60 million characters. 

The prime exponent 57885161  has the OCRON type 4 representation 

2PP2*P2PP*2P*P22^P*2P22^^*2*P having a length of 29 characters! 257885161 has the 

OCRON representation 22PP2*P2PP*2P*P22^P*2P22^^*2*P^ with a length of 31 

characters! 

The following consideration is even more amazing: let us assume that the number 

257885161 + 1  (= 3 ∗  possible Wagstaff candidate) has a similar complexity (with 

estimated 60 million characters OCRON length) as its 'Mersenne neighbor' 257885161 −
1. 

Now one can simply write down the (unimaginably gigantic) number 22
57885161+1  in 

OCRON type 4 representation because of the multiplicative property of the OCRONs: 

22
57885161+1 = 22

57885161
∗ 2 = 𝟐𝟐2PP2 ∗ P2PP ∗ 2P ∗ P22^P ∗ 2P22^^ ∗ 2 ∗ P^ ∗  

Having an OCRON length of 33 characters! This could mean that a great portion of 

redundancy is present in the OCRON type 4 representation of 257885161 + 1 (HAVING 

presumably a length of millions of characters). There could therefore be an unknown 

algorithm that eliminates this redundancy! 

If the hypothesis above about similar large complexities is true, then the question arises, 

why 22
57885161+1 has less complexity by a factor of 2 million than its seemingly simpler 

exponent 257885161 + 1 ! In order that this idea can also be applied to 𝑀48 and its power 

of 2 (2𝑀48), it would have to be decomposed just as easily in 22
57885161

∗ 2−1. This would, 

in turn, indicate an extension of the OCRON concept to negative integers and will be the 

subject of further studies. 

Curiosities: 

The sequential operator representation used in the OCRONs is ‘without alternative’. Here 

is an example of what the OCRON of the 17th Mersenne prime number 𝑀59 looks like 

when the expression is displayed 'conventionally'. We have up to five levels of nested 

indices (both in the base and in the mantissa). This number is now practically unreadable: 

𝑀59 = 𝑝𝑝2𝑝𝑝2𝑝𝑝𝑝2
𝑝𝑝𝑝2𝑝𝑝

22
𝑝
2𝑝2(𝑝

22
)2(𝑝𝑝2)

2
𝑝2𝑝𝑝𝑝2𝑝𝑝𝑝2𝑝2

 

10.2.2.1 PROPERTIES AND EXTENSION OF TYPE 4 OCRONS: EOCRONS 

Let us return to the well-formed and non-well-formed OCRONs. 
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Not all OCRONs that can be represented by the symbols′ ∗ ′, ′^′, ′2′ 𝑎𝑛𝑑 ′𝑃′ are 'well-

formed' and give meaning so that they can be processed (e.g. the sequence ^^ 𝒑 ∗  𝟐𝟐𝟐 

is not a well-formed OCRON). 

There is now a possibility of assigning these degenerate OCRONs in a reasonable, 

meaningful way also an indication and thus a numerical value. For the interpretation of 

an OCRON, the symbols of the OCRON sequence must be 'pushed' onto the stack or 

processed according to the rules of the 'Polish' notation. 

 

- We ‘prime’ the stack with infinitely many virtual ′2′ symbols so that in the case 

of 'unexpected', ‘ ∗ ’ or ‘^’ symbols (‘unexpected' here means that at the time of 

the processing of an operator symbol, the stack has less than 2 values) the operator 

can still applied. 

- If there are still more than one stack entries at the end of the processing of an 

OCRON, then we append virtual ′ ∗′  symbols, as many as needed (i.e. 

multiplications with a virtual 2s) from left, until the stack has only one entry (the 

final result). 

Using these rules, non-well-formed OCRONs can be transformed into normal OCRONs. 

Any OCRON (even if non-well-formed) is thereby given an unambiguous value. 

Conversely, normal OCRONs can be shortened by discarding the leading ′2′, which is 

always present, and removing all '*'s at the end, which would have eventually reduced 

the stack to a single value. 

This has the advantage that, at the end of the OCRON processing, as many stack entries 

remain as factors are present, unless our number is a power number (number which can 

be written as a power). The number of prime factors can also be ‘extracted’ from the 

OCRONs without having to go to the meaning level of ‘numbers’. We can remain on the 

formal typographic OCRON level of meaning without explicit decoding. 

This means in practice that we simply remove the last ′ ∗ ′s (if the end of the OCRON 

consists only of successive ′ ∗ ′𝑠 , so the stack remains unchanged). These 'erased' 

multiplications can be added again afterwards (see above, 'virtual' ′ ∗ ′s), so that again a 

well-formed OCRON arises. 

 

Let us denote these non-well-formed OCRONs together with the set of well-formed 

OCRONs ‘EOCRONs' (= Enhanced OCRONs). Either types may be converted into the 

other. In order to make a well-formed OCRON from a non-well-formed EOCRON, it 

must always be enlarged (to the left or to the right). 

 

We distinguish three types of OCRONs: (well-formed OCRONs), standardized 

EOCRONs, any EOCRONs. 

Properties or transformation rules of (well-formed) OCRON4s 

-  An OCRON4 consists of an arbitrarily long string of OCRON4 symbols (2, 

P, ^, *) which, when interpreted, yield a value. 
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- OCRON4s may be concatenated (that is, linked together, and finally 

appended by a ′ ∗ ′). This concatenation is associative and commutative and 

corresponds to a multiplication on the number significance level. 

- Each OCRON4 (= well-formed) begins with a '2' and ends with a '*', '^' or 

'P'. The only OCRON4 that can end with a '2' is '2' itself. 

- Except for the concatenation rule, there are at present no further important 

rules known (for example, addition rule, or transformation rules). 

- The number 𝟏 has no representation by type 4 OCRONs 

-  The length of a type 4 OCRON typically increases proportional to the value 

of the corresponding number. 

- The difference between the maximum length and the minimum length of 

OCRONs resulting in a set of degenerate OCRONs (i.e. having the same 

numerical value) can be arbitrarily large. 

 

Properties or transformation rules of (any) EOCRON4s 

-  An EOCRON4 consists of an arbitrarily long string of OCRON4 symbols (2, 

P, ^, *) that can be arranged arbitrarily. 

- For a non-well-formed EOCRON4 to be interpreted, it must be converted 

into a well-formed OCRON4, resulting in an enlargement. 

- There is an empty EOCRON4: by converting to an OCRON4 this is the '2'. 

- There are EOCRONs, which result in the same numerical value as the 

standard EOCRONs when interpreted, but are shorter. 

 

Properties or transformation rules of (standardized) EOCRON4s 

-  A standardized EOCRON4 consists of an arbitrarily long string of OCRON4 

symbols (2, P, ^, *). 

 - For a standardized EOCRON4 to be interpreted, it must be converted into a 

well-formed OCRON4 (possibly by inserting '2' symbols at the beginning and 

adding '*' symbols at the end). This results in an enlargement. 

- There is an empty standardized EOCRON4: by converting to an OCRON4, 

this is the '2'. 

- The number of prime factors of an EOCRON4 is simply the number of stack 

entries after interpretation of all standardized EOCRON symbols (with 

insertion of the leading, ‘2’ before conversion into a well-formed OCRON). 
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- Each standardized EOCRON4 (= well-formed) ends with a '^' or 'P'. It can 

never end with a '*' or '2'. 

- Standardized EOCRONs can be concatenated (corresponding to a 

multiplication), but are then no longer standardized. 

- The difference between the maximum length and the minimum length of 

EOCRONs which result in a set of degenerate EOCRONs (i.e. having the 

same numerical value) can become arbitrarily large. 

 

The last property suggests that any transformation rules between degenerate OCRONs or 

EOCRONs are not trivial at all! 

Here is a type 4 EOCRON table (generated with the software: "kmatrix54, red: ‘minimal 

EOCRONs blue background: well formed): 

Table 19. The first 100 type 4 EOCRONs (in ascending order)  

type 4 EOCRON Value (n) type 4EOCRON Value (n) 
* 

P 

2 

^ 

P* 

PP 

P2 

P^ 

2* 

2P 

22 

2^ 

^* 

^P 

^2 

^^ 

P** 

P*P 

P*2 

P*^ 

PP* 

PPP 

PP2 

PP^ 

P2* 

P2P 

P22 

P2^ 

P^* 

P^P 

P^2 

P^^ 

2** 

2*P 

4 

3 

4 

4 

6 

5 

6 

8 

4 

6 

8 

4 

8 

7 

8 

16 

12 

13 

12 

64 

10 

11 

10 

32 

6 

9 

12 

9 

16 

19 

16 

256 

8 

7 

^*2 

^*^ 

^P* 

^PP 

^P2 

^P^ 

^2* 

^2P 

^22 

^2^ 

^^* 

^^P 

^^2 

^^^ 

P*** 

P**P 

P**2 

P**^ 

P*P* 

P*PP 

P*P2 

P*P^ 

P*2* 

P*2P 

P*22 

P*2^ 

P*^* 

P*^P 

P*^2 

P*^^ 

PP** 

PP*P 

PP*2 

PP*^ 

16 

256 

14 

17 

14 

128 

8 

12 

16 

16 

32 

53 

32 

65536 

24 

37 

24 

4096 

26 

41 

26 

8192 

12 

18 

24 

36 

128 

311 

128 

18446744073709551616 

20 

29 

20 

1024 

 
54 Kmatrix: http://kmatrix.eu 

http://kmatrix.eu/
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2*2 

2*^ 

2P* 

2PP 

2P2 

2P^ 

22* 

22P 

222 

22^ 

2^* 

2^P 

2^2 

2^^ 

^** 

^*P 

8 

16 

6 

10 

12 

8 

8 

12 

16 

8 

8 

7 

8 

16 

16 

19 

PPP* 

PPPP 

PPP2 

PPP^ 

PP2* 

PP2P 

PP22 

PP2^ 

PP^* 

PP^P 

PP^2 

PP^^ 

P2** 

P2*P 

P2*2 

P2*^ 

22 

31 

22 

2048 

10 

15 

20 

25 

64 

131 

64 

4294967296 

12 

13 

12 

64 

 

 

 

10.2.2.2 DEGENERATION OF TYPE 4 OCRONS 

Degeneration was defined in 10.2.1.1. The degree of degeneration depends strongly on 

the composition of the number, i.e. how many prime factors it contains. 'Highly' 

composite numbers have a high OCRON degeneration, whereas primes often have a small 

degeneration. Some primes have a degeneration value of 1 (and thus no degeneration). 

Here is a small table of degeneration values of the first 100 type 4 OCRONs: 

Table 20. Degeneration values of the first 100 type 4 OCRONs 

n Degener. n Degener. n Degener. n Degener. 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

0 

1 

1 

2 

1 

2 

2 

5 

2 

2 

1 

8 

2 

4 

2 

18 

2 

8 

5 

8 

4 

2 

2 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

4 

5 

16 

2 

12 

1 

57 

2 

4 

4 

46 

8 

10 

4 

34 

2 

24 

4 

8 

8 

4 

2 

156 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

4 

16 

18 

34 

2 

68 

10 

4 

2 

72 

8 

2 

16 

220 

4 

12 

5 

16 

4 

24 

8 

244 

4 

76 

77 

78 

79 

80 

81 

82 

83 

84 

85 

86 

87 

88 

89 

90 

91 

92 

93 

94 

95 

96 

97 

98 

40 

4 

24 

2 

156 

18 

4 

2 

144 

4 

8 

4 

34 

34 

72 

8 

16 

2 

4 

10 

714 

2 

28 
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24 

25 
34 

2 
49 

50 

6 

8 
74 

75 

16 

8 

99 

100 

8 

46 

 

A table of type 4 OCRONs of the first 25  natural numbers, including degenerate 

OCRONs as well as other tables about OCRONs, can be found in the Appendix. 

The degeneracy grows very fast with n (albeit not as fast as with type 3 OCRONs), as the 

following graphic shows: 

 

Figure 100. Degeneration of well formed OCRON4s up to n=256 (logarithmic plot) 

Mathematica: 

data = 

Import["primes/data/ocron4_wellformed_Degeneration_OK_upto_256.txt","C

SV"] 

ListLogPlot[data,PlotStyle->Red,AxesLabel->Automatic,Filling-

>Axis,PlotMarkers->Automatic,PlotRange->All] 

 

 

10.2.2.3 STANDARDIZATION OF TYPE 4 OCRONS AND EOCRONS 

Because of the high degree of degeneration of these OCRON types, we want to pick out 

from the many possible (E)OCRON representations the so-called ‘standard type’, which 

corresponds to the following OCRON rules: 

- The standardized form should correspond to the prime factor decomposition (that 

is, each prime number may only occur once for a decomposition together with its 

exponent). 
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- Whenever products appear, the rule of ascending sorting (first the small factors, 

then the large factors) applies. 

- ‘ ^′ has a higher priority than the ′ ∗ ′ operator; that is, whenever possible, we take 

the ‘ ^’  operator instead of the ′ ∗ ′  operator (for example, ‘ 22 ^′  instead of 

‘ 22 ∗’). 
- The standardization should result in a reduced, minimal form (as a minimum 

EOCRON), in which the prime factor assignment can simply be read off from the 

stack values. 

 

Before OCRONs are converted to EOCRONs, they should be converted into the 

standardized form. 

Note: the transformation of any type 4 OCRON into standardized type 4 OCRONs 

only at the symbol level (without evaluation as a number) is a difficult and unsolved 

problem! 

10.2.2.4 THE GÖDELIZATION OF TYPE 4 OCRONS 

By 'Gödelization' we mean a change in the level of meaning from a procedural point of 

view (each OCRON represents a small computer program by means of which its value 

can be calculated) into a static ‘value-defined’ interpretation. We assign a positive, integer 

value 𝑛 to each OCRON (which initially consists only of a chain of formal symbols). This 

approach was originally invented by the mathematician Kurt Gödel, who succeeded in 

proving his famous ‘incompleteness theorem’ with this method. 

This assignment is arbitrary and can be done in various ways. However, it is common to 

all methods that the so-called ‘Gödel code’ is assigned to each OCRON symbol (e.g. the 

‘^’ symbol gets the value of 3). The entire OCRON chain then results (when interpreted 

by arithmetical processing of the individual OCRON symbols) in a total numerical value. 

Here, we also have complete freedom with respect to the choice of a suitable algorithm 

which combines the individual Gödel codes of the OCRON symbols into a total value. 

We want to limit this freedom of choice by demanding that the resulting Gödel values 

should become as small as possible, so that we can examine their possible arithmetic laws 

as easily as possible. In the Gödelization used by Gödel himself, astronomically high 

values arise that are useless for further arithmetic investigation.  

More information can be found in Hofstadter's book 'Gödel-Escher-Bach' (Hofstadter, 

1991/1985)55. The change of the level of meaning from formal symbols ('typographic') 

into the world of numbers is amazing (we quote Hofstadter from his famous book): 

“Stepping out of one purely typographical system into another isomorphic typographical 

system is not a very exciting thing to do; whereas stepping out of the typographical 

domain into an isomorphic part of number theory has some kind of unexplored potential. 

It is as if somebody has known musical scores all his life, -but purely visually- and then, 

all of a sudden, someone introduced him to the mapping between sounds a musical scores. 

What a rich, new world! Then again, it is as if somebody has been familiar with string 

 
55 p. 271: The Boomerang: Gödel-Numbering TNT 



OCRONs with prime operators  

194 
 

figures all his life, but purely as string figures devoid of meaning - and then, all of a 

sudden, someone introduced him the mapping between stories and strings. What a 

revelation! The discovery of Gödel numbering has been likened to the discovery, by 

Descartes, of the isomorphism between curves in a plane and equations in two variables; 

incredibly simple, once you see it - and opening onto a vast new world.” 

 
 

 

 

Here are a few conceivable possibilities of ‘Gödelizations’: 

The simple prime number Gödelization56 

For this purpose, for each OCRON 𝒐 of length 𝑙, we need the first 𝑙 prime numbers, e.g. 

to ‘Gödelize’ the string ‘22^P2*P’ (of length 7), we need the first 7 prime numbers 𝑷𝒏 =
2,3,5,7,11,13,17, as well as the Gödel codes 𝒈𝒄(𝐬𝐲𝐦𝐛𝐨𝐥) for the OCRON symbols (e.g. 

1 for ‘ ∗ ’, 2 for ′2′, 3 for  ′P′and 4 𝑓𝑜𝑟 ′^′). 

The Gödel codes must have integer values > 0. The value 0 is not allowed. The total 

value is then obtained by multiplying the factors 𝑷𝒏
𝒈𝒄(𝐬𝐲𝐦𝐛𝐨𝐥)

 by one another (where 𝑛 

runs up to the OCRON length 𝑙 − 1): 

Example: the OCRON ‘22^P2*P’ (corresponding to a value of 43) has 

- in the first position, the value 𝑷𝟏
𝒈𝒄(𝟐) = 𝟐𝟐 = 𝟒 

- in the second position, the value 𝑷𝟐
𝒈𝒄(𝟐) = 𝟑𝟐 = 𝟗 

- in the third position, the value𝑷𝟑
𝒈𝒄(^) = 𝟓𝟒 = 𝟔𝟐𝟓 

- in the fourth position, the value 𝑷𝟒
𝒈𝒄(𝑷) = 𝟕𝟑 = 𝟑𝟒𝟑 

- in the fifth position, the value 𝑷𝟓
𝒈𝒄(𝟐) = 𝟏𝟏𝟐 = 𝟏𝟐𝟏 

- in the sixth position, the value 𝑷𝟔
𝒈𝒄(∗) = 𝟏𝟑𝟏 = 𝟏𝟑 

- in the seventh position, the value 𝑷𝟕
𝒈𝒄(𝑷) = 𝟏𝟕𝟑 = 𝟒𝟗𝟏𝟑 

The total value 𝑔(𝑜) (Gödel number of 22^P2*P) results in: 

𝒈(𝒐) = 𝒈(22^P2*P) = 𝟒 ∗ 𝟗 ∗ 𝟔𝟐𝟓 ∗ 𝟑𝟒𝟑 ∗ 𝟏𝟐𝟏 ∗ 𝟏𝟑 ∗ 𝟒𝟗𝟏𝟑 = 𝟓𝟗𝟔𝟒𝟏𝟗𝟖𝟗𝟗𝟎𝟕𝟓𝟎𝟎 

or generally (with 𝑙=length of the OCRON) 

𝑔(𝑜) =∏𝑃𝑛
𝑔𝑐(OCRON[𝑛−1])

𝑙

𝑛=1

 (151) 

 

From the prime factor decomposition of 59641989907500, it is possible to reconstruct 

the OCRON ‘22 ^ P2 * P’', and finally the original number 43. 

 
56 https://en.wikipedia.org/wiki/Gödel_numbering 

https://en.wikipedia.org/wiki/Gödel_numbering
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The advantage of this method is the small number of 'degrees of freedom' (here 4 for the 

choice of the Gödel codes of the OCRONs) and the independence in the representation 

of any possible numeral system (for example, decimal system or binary system). The 

disadvantage is clear: we get unwieldy large numbers for the Gödel numbers, which are 

also difficult to decode. 

The main drawback, however, is that there are a lot of numbers that do not correspond to 

any Gödel number (and therefore cannot be converted into an OCRON), namely all 

numbers having a prime factor decomposition that is not in the complete order of the first 

numbers of 𝑛 prime numbers, or numbers whose prime factor decomposition contain a 

prime power that is greater than all the occurring Gödel codes of our OCRONs. For 

example 𝟑𝟐 = 𝟐𝟓 would not be a valid Gödel code. 

The simple prime number Gödelization represents an injective mapping of the set of 

OCRONs onto the set of positive natural numbers ℕ+. 

The differential prime number Gödelization 

In this method, we need more than the first 𝑙 prime numbers, where 𝑙 is the OCRON 

length, as well as the fixed Gödel codes 1, 2, 3 and 4 for the symbols ‘*’, ‘2’, ’P’ (note 

that the assignment is arbitrary, so that we have here also 4!  =  24  possible code 

assignments). With which algorithm is it now possible to construct from an arbitrarily 

long OCRON chain (composed of the symbols, ‘*’, ’2’, ’P’, ’^' with the corresponding 

Gödel codes (e.g. 1, 2, 3, 4)) a unique Gödel numbering? 

By treating a Gödel code as an offset of indices in the prime number table. For the above 

example, we therefore get: 

The OCRON ‘22^P2*P’ has (using a slightly different Gödel code assignment ∗ −>
0, 𝑃−> 1, 2−> 2, ^−> 3): 

- in the first position, the value  𝑃0+𝑔𝑐(2) = 𝑃2 = 3 

- in the second position, the value 𝑃2+𝑔𝑐(2) = 𝑃4 = 7 

- in the third position, the value  𝑃4+𝑔𝑐(^) = 𝑃7 = 17 

- in the fourth position, the value  𝑃7+𝑔𝑐(𝑃) = 𝑃8 = 19 

- in the fifth position, the value  𝑃8+𝑔𝑐(2) = 𝑃10 = 29 

- in the sixth position, the value  𝑃10+𝑔𝑐(∗) = 𝑃10 = 29 

- in the seventh position, the value  𝑃10+𝑔𝑐(𝑃) = 𝑃11 = 31 

The total value 𝑔(𝑜) (Gödel number of 22^P2*P) finally results in: 

𝒈(𝒐) = 𝒈(22^P2*P) = 𝟑 ∗ 𝟕 ∗ 𝟏𝟕 ∗ 𝟏𝟗 ∗ 𝟐𝟗𝟐 ∗ 𝟑𝟏 = 𝟏𝟕𝟔𝟖𝟑𝟗𝟓𝟗𝟑 

This looks quite a bit better, but this method still has the disadvantages described in the 

last method. 

Gödelization by using numeral systems 
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Here, we simply replace the symbols of the OCRON chains with the respective Gödel 

codes, and receive e.g. from ‘22^P2*P’ the Gödel number, 2231201 which is best 

represented in the base 4 system: 22312014 . This coding is easy to perform in both 

directions (OCRON->Gödel number and Gödel number->OCRON) and has a great 

advantage: it is bijective, unambiguous in both directions, i.e. there is a definite EOCRON 

for any given Gödel number. We denote here explicitly EOCRON, since the conversion 

often results in non-well-formed OCRONs (= EOCRONs), which can, however, easily 

be transformed into well-formed ones, by the method described in 10.2.2.1. Using this 

Gödelization method, we now have a tool to transform arbitrary numbers with the 

help of this ‘Gödel transformation’ into a Gödel number (in which somehow the 

construction principle of this number is hidden). A transformation that leads us into 

another world of numbers, which involves a change in the fundamental meaning of 

the numbers! 

 

Here are a few tables to give an idea of the abstract descriptions (with o(n) = OCRON(n) 

and g(n) = g(OCRON(n))=Gödel number: 

Properties of EGOCRONs 

Note that the ‘EGOCRONs’ are almost always larger than the numbers from which 

they originate and are always odd. 

Table 21. Type 4 EOCRONs (standard representation) and Gödel numbers from 2 to 100. Gödel 
codes:(‘ *’=0,’P’=1,’2’=2,’^’=3)   

N o(n) g(n) N o(n) g(n) 
2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

(Leer) 

P 

2^ 

PP 

2P 

2^P 

2P^ 

P2^ 

2PP 

PPP 

2^2P 

2P*P 

22^P 

P2PP 

22^^ 

2^PP 

2P2^ 

2P^P 

2^2PP 

P22^P 

2PPP 

P2^P 

2P^2P 

PP2^ 

22P*P 

P2P^ 

2^22^P 

(-) 

1 

11 

5 

9 

45 

39 

27 

37 

21 

185 

145 

173 

101 

175 

181 

155 

157 

741 

429 

149 

109 

633 

91 

657 

103 

2989 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

76 

77 

P22^PP 

2^22P*P 

22^^P 

2P2P^ 

PP2PPP 

2P^22^P 

P22P^P 

22PP*P 

2^PPP 

2^2P2PP 

2P2^*P 

2PPPP 

P2^22^P 

22P*^ 

PP22P*P 

2P2PPP 

2P^PP 

2^22^PP 

P2P2^P 

2PP22^P 

2^2PP*P 

2P^2P2^ 

P22^P*P 

22^2P*P 

P2PP2^ 

2^22P^P 

2^P2PPP 

1717 

11921 

701 

615 

1429 

10157 

1693 

2641 

725 

11877 

2481 

597 

7085 

659 

5777 

2453 

629 

11957 

1645 

9645 

11857 

10139 

6865 

11153 

1627 

11933 

11669 
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29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

2PP*P 

2P2PP 

PPPP 

2PP^ 

P2PPP 

22^PP 

PP22^P 

2^2P2^ 

2^2P*P 

22P^P 

P22P*P 

2P^2PP 

2P*PP 

2P22^P 

22^P*P 

2^2PPP 

P2^2PP 

2P2^P 

P2PP*P 

22^^2P 

2^P2^ 

2PP2^ 

593 

613 

85 

151 

405 

693 

1453 

2971 

2961 

669 

1681 

2533 

581 

2477 

2769 

2965 

1765 

621 

1617 

2809 

731 

603 

78 

79 

80 

81 

82 

83 

84 

85 

86 

87 

88 

89 

90 

91 

92 

93 

94 

95 

96 

97 

98 

99 

2P22P*P 

2PPP*P 

22^^2PP 

P22^^ 

22P*PP 

P2^PP 

2^2P22^P 

PP22^PP 

222^P*P 

P22PP*P 

2P^2PPP 

2P^2P*P 

2P2^2PP 

2^P22P*P 

2^2P2^P 

P2PPPP 

2P2PP*P 

PP22P^P 

2PP^2P 

PP2^P 

22^P2^ 

P2^2PPP 

9873 

2385 

11237 

431 

2629 

437 

47533 

5813 

10961 

6737 

10133 

10129 

9957 

46737 

11885 

1621 

9809 

5789 

2425 

365 

2779 

7061 

 

Properties of inverse EGOCRONs 

Note that the inverse numbers of the Gödel numbers (inverse EGOCRONs) are 

almost always smaller than the original Gödel numbers from which they originate. 

 

Table 22. Type 4 EOCRONs (inverse Gödelization from g=0 to 99) 

Gödel 

number g 

EOCRON 

for g 

n Gödel 

number g 

EOCRON 

for g 

n 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

* 

P 

2 

^ 

P* 

PP 

P2 

P^ 

2* 

2P 

22 

2^ 

^* 

^P 

^2 

^^ 

P** 

P*P 

P*2 

P*^ 

PP* 

PPP 

PP2 

PP^ 

4 

3 

4 

4 

6 

5 

6 

8 

4 

6 

8 

4 

8 

7 

8 

16 

12 

13 

12 

64 

10 

11 

10 

32 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

^*2 

^*^ 

^P* 

^PP 

^P2 

^P^ 

^2* 

^2P 

^22 

^2^ 

^^* 

^^P 

^^2 

^^^ 

P*** 

P**P 

P**2 

P**^ 

P*P* 

P*PP 

P*P2 

P*P^ 

P*2* 

P*2P 

16 

256 

14 

17 

14 

128 

8 

12 

16 

16 

32 

53 

32 

65536 

24 

37 

24 

4096 

26 

41 

26 

8192 

12 

18 
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24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

P2* 

P2P 

P22 

P2^ 

P^* 

P^P 

P^2 

P^^ 

2** 

2*P 

2*2 

2*^ 

2P* 

2PP 

2P2 

2P^ 

22* 

22P 

222 

22^ 

2^* 

2^P 

2^2 

2^^ 

^** 

^*P 

6 

9 

12 

9 

16 

19 

16 

256 

8 

7 

8 

16 

6 

10 

12 

8 

8 

12 

16 

8 

8 

7 

8 

16 

16 

19 

74 

75 

76 

77 

78 

79 

80 

81 

82 

83 

84 

85 

86 

87 

88 

89 

90 

91 

92 

93 

94 

95 

96 

97 

98 

99 

P*22 

P*2^ 

P*^* 

P*^P 

P*^2 

P*^^ 

PP** 

PP*P 

PP*2 

PP*^ 

PPP* 

PPPP 

PPP2 

PPP^ 

PP2* 

PP2P 

PP22 

PP2^ 

PP^* 

PP^P 

PP^2 

PP^^ 

P2** 

P2*P 

P2*2 

P2*^ 

24 

36 

128 

311 

128 

18446744073709551616 

20 

29 

20 

1024 

22 

31 

22 

2048 

10 

15 

20 

25 

64 

131 

64 

4294967296 

12 

13 

12 

64 

 

One may wonder what the frequencies of the ‘*’, ’P’, ’2’ and ‘^’ symbols are. A statistical 

evaluation of the EOCRONs of the type 4 for the natural numbers from  3 to 10000 

yields the following frequencies: 

Total number of symbols: 123952 

of which P symbols: 52664 (42, 487 %) 

of which 2 symbols: 42794 (34, 525 %) 

of which ^ symbols: 16711 (13, 482 %) 

of which * symbols: 11783 (9, 506 %) 

 

The following illustration shows a logarithmic representation of the Gödel numbers for 

the first 5,000 natural numbers using the Gödel codes ‘*’ = 0, ‘P’ = 1, ‘2’ = 2, and ‘^’ = 

3. In the Gödelization, the base 4 numeral system was used. One can clearly see a striated 

structure. 
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Figure 101. Logarithmic representation of the Gödel numbers for the first 5000 natural 
numbers by using the Gödel codes ‘ *’=0, ‘ P’=1, ‘ 2’=2, and also ‘ ^’=3 

Mathematica: 

data=Import["primes/data/EGOCRONsTyp8_3.txt",{"Data",All,{1}}]; 

ListLogPlot[{data,{All}{1}},PlotStyle->Black,PlotMarkers-

>Automatic,AxesLabel->Automatic,PlotRange->All,ImageSize->Large] 

 

And here in the region from 1 to 200: 

 
Figure 102. Logarithmic representation of the Gödel numbers for the first 200 natural 
numbers by using the Gödel codes ‘ *’=0, ‘ P’=1, ‘ 2’=2, and also ‘ ^’=3 
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10.2.3 OCRONS WITH THE PRIME “P”, “*”, “^” AND “Q” OPERATORS 

The Q operator replaces multiple consecutive ‘P’ operators by the sequence <𝑛>Q, where 

𝑛  is represented in the corresponding OCRON coding and contains the number of 

successive 𝑃's. All other operators are identical to the OCRON type 4. We call this type 

OCRON type 5. 

10.2.3.1 DEGENERATION OF TYPE 5 OCRONS 

Degeneration was defined in 10.2.1.1. The degeneration increases very quickly with 𝑛 

as shown in the following graph: 

 

Figure 103. Degeneration of well-formed OCRONs of type 5 up to n=128 

 

Mathematica: 

data = 

Import["primes/data/ocron5_wellformed_Degeneration_OK_upto_128.txt","C

SV"] 

ListPlot[data,PlotStyle->Red,AxesLabel->Automatic,Filling-

>Axis,PlotMarkers->Automatic,PlotRange->All] 

 

10.2.4 OCRONS WITH PRIME AND NON-PRIME OPERATORS 

This type of OCRON has only two operators: the prime operator ‘𝑃’, and the non prime 

operator, which for the sake of simplicity we may also refer to by ‘∗’ (not to be confused 

with the multiplication operator used by the OCRON types 3 to 5. The interpretation of 
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the operators is the same as for the type 3, type 4 and type 5 operators: let 𝑛 be the current 

numeric value, which is always in the lowest stack drawer. The ‘𝑃’ operator calculates 

the 𝑛th prime number and thus overwrites the stack value. The ‘∗ ‘operator calculates the 

𝑛th non prime number (=composite number) and thus also overwrites the lowest stack 

value. 

In this way, any number 𝑛 ≥ 1 can be written as a sequence of '∗' and '𝑃’ operators. Note 

that there is no multiplication operator or power operator any more! The new set of 

OCRONs is given the type 6. For the calculation of the OCRONs, it is only important 

that the stack be ‘pre’-occupied by the value 1, so that the value 1 will be the result for 

the ‘*’ OCRON (first not prime number) and ‘P’ has the value 2 (first prime number). 

The zero has no correspondence in the ‘𝑃 ∗’ OCRON coding. 

Prime OCRONs have a number of very interesting and remarkable properties: 

 

1) The ‘𝑃 ∗’ representation is unique (bijective), i.e. for each number there is a 

unique ‘𝑃 ∗’ representation and vice versa! Using ‘𝑃 ∗’ OCRON representation, 

the set of natural numbers can be rearranged, and in a unique way. 

2) A direct consequence is that there is no more degeneration and the corresponding 

Gödel numbers remain manageably small. 

To illustrate here the first 100 ‘𝑃 ∗’ OCRONs, together with their Gödel numbers, based 

on the Gödel codes ∗ =  0 and 𝑃 =  1; for the Gödel number GN (g) we also use the term 

'GOCRON' (= Gödelized OCRON). 

Table 23. Prime OCRONs (P and * operator) with Gödel numbers (GCodes P=1, *=0)  

N G=OCRON6(N) GN(g) N G=OCRON6(N) GN(g) 
0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

(-) 

* 

P 

PP 

P* 

PPP 

PP* 

P*P 

P** 

PPP* 

PP** 

PPPP 

P*P* 

PP*P 

P*** 

PPP** 

PP*** 

P*PP 

PPPP* 

P**P 

P*P** 

PP*P* 

P**** 

PPP*P 

PPP*** 

PP**** 

P*PP* 

PPPP** 

(-) 

0 

1 

3 

2 

7 

6 

5 

4 

14 

12 

15 

10 

13 

8 

28 

24 

11 

30 

9 

20 

26 

16 

29 

56 

48 

22 

60 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

76 

77 

PPP***** 

PP****** 

P*P*P* 

PP***P 

P*PP*** 

PPPP**** 

P**P*** 

PP*PP* 

PP**P** 

P*PPP 

P***P* 

PPPP*P 

P*P***** 

PPPPP** 

PP*P**** 

PPP**P* 

P******* 

P**PP 

PPP*P*** 

PPP****** 

PP******* 

P*P**P 

P*P*P** 

PP*P*P 

PP***P* 

P*PP**** 

PPPP***** 

P**P**** 

224 

192 

42 

49 

88 

240 

72 

54 

100 

23 

34 

61 

160 

124 

208 

114 

128 

19 

232 

448 

384 

41 

84 

53 

98 

176 

480 

144 
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28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

P**P* 

PP**P 

P*P*** 

PPPPP 

PP*P** 

P***** 

PPP*P* 

PPP**** 

PP***** 

P*P*P 

P*PP** 

PPPP*** 

P**P** 

PP*PP 

PP**P* 

P***P 

P*P**** 

PPPPP* 

PP*P*** 

PPP**P 

P****** 

PPP*P** 

18 

25 

40 

31 

52 

32 

58 

112 

96 

21 

44 

120 

36 

27 

50 

17 

80 

62 

104 

57 

64 

116 

78 

79 

80 

81 

82 

83 

84 

85 

86 

87 

88 

89 

90 

91 

92 

93 

94 

95 

96 

97 

98 

99 

PP*PP** 

P****P 

PP**P*** 

P*PPP* 

P***P** 

PPP*PP 

PPPP*P* 

P*P****** 

PPPPP*** 

PP*P***** 

PPP**P** 

PPP***P 

P******** 

P**PP* 

PPP*P**** 

PPP******* 

PP******** 

P*P**P* 

P*P*P*** 

PP****P 

PP*P*P* 

PP***P** 

108 

33 

200 

46 

68 

59 

122 

320 

248 

416 

228 

113 

256 

38 

464 

896 

768 

82 

168 

97 

106 

196 

 

Mathematica (calculation n->GOCRON(n): 

Please contact the author. 

 

Note that in the binary representation of the Gödel numbers GN(g), prime numbers 

always end with a '1' digit and composite numbers with a '0' digit! Or in the decimal 

notation: prime numbers always have an odd Gödel number, composite numbers always 

have an even Gödel number! The resulting sequence of Gödel numbers is not quite 

unknown; it can be found on the Internet at https://OEIS.org (A071574 and A237739)57.  

Here is a logarithmic plot of the prime GOCRONs: 

 
57 https://oeis.org/A071574 

https://oeis.org/
https://oeis.org/A071574
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Figure 104. Prime GOCRONs of type 6 (n->GOCRON[n]) from 1 to 10000 
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The following table constitutes the inverse of Table 23. 

Table 24. Prime GOCRONs, OCRONs and the corresponding inverse numbers from 0 to 99  

GOCRON OCRON N GOCRON OCRON N 
0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 
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Mathematica program (calculation GOCRON->n (inverse): please contact 

the author. 

 

 

 

Here is a logarithmic plot of the inverse prime GOCRONs (of type 6): 

 

Figure 105. Inverse prime GOCRONs of type 6 (GOCRON->n) from 1 to 10000 
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10.3 THE WORLD OF OCRON BEINGS AND MATHEMATICAL DYNAMITE 

Note: in order to understand this chapter properly, the reader should at least be a bit 

familiar with the type 4 OCRONs (see Chapter 10.2.2).  

We want to make an excursion into the world of OCRON beings. This is a thought 

experiment, since we do not know for certain whether this world exists together with 

its inhabitants, which we will call 'OCRONians'. Thought experiments are a 

successful tool in science to make complex relations clearer. It is known that Einstein 

had the decisive idea for his general theory of relativity by using thought experiments. 

One of these thought experiments was that he imagined himself to be in a huge falling 

elevator that is large enough to hold a whole physics laboratory with all possible 

measuring instruments, and which would not have any contact with the environment 

outside. He compared this situation with a closed room (also having all possible 

measuring instruments and devices and also without contact to the outside world) that 

is moving with constant velocity through space far away from any planets or other 

space objects (today in the space age this is no longer hard to imagine). A physicist 

who is in the first or in the second room can perform all the measurements and 

experiments he wants. All types of measuring instruments are available in the two 

rooms. However, the physicist cannot determine, solely by means of measurements 

performed within the respective room, whether it is situated in a falling elevator (it 

may also be said to be within reach of a gravitational field), or in a space ship moving 

with constant velocity far away in space. 

A similar thought experiment would be to put the first closed room, together with the 

measuring instruments simply on the surface of the earth, to place the other room on 

the top of a rocket that has turned its engines on, and which moves with a constant 

acceleration through the universe. Again, a physicist cannot determine solely by 

measurements performed within the respective rooms in which situation he is. 

The logical conclusion was that the two respective situations do not only appear to 

be identical, but are actually identical. A gangway can be constructed between the 

respective situations using appropriate mathematical tools. In the case of the general 

theory of relativity, it was the idea of a 'curved spacetime' that finally produced the 

equivalence of the two situations. 

 

Our thought experiment leads us into another world, a world that is so completely 

different from ours that we can hardly imagine it. The cosmologists often speak of 

other worlds. There is the concept of a multiverse, which includes many or even 

infinitely many universes of a certain kind. The universe, in which we want to go 

now originated in a multiverse, which has a name: in his book 'Our Mathematical 

Universe', Max Tegmark58  calls it the ‘level IV' multiverse. Tegmark speaks of 

different parallel universes that form a four-stage hierarchy, each multiverse being a 

single element among many of the other ones existing one level higher. According to 

his theory, level I and II universes emerged physically after the Big Bang in the so-

called ‘inflationary phase’. In level I, however, each universe has the same physical 

natural laws and natural constants, the same mathematics, however different initial 

conditions. In level II each universe has the same natural laws and the same 

mathematics but different natural constants and different particles. This type of 

multiverse can also have higher spatial dimension. The level III multiverse 

corresponds to the level II multiverse, but it consists of infinitely many individual 
 

58 Max Tegmark: Our mathematical universe, Ullstein Buchverlage GmbH, Berlin 
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universes that continuously split up by generating new universes, always when 

anybody perceives something (or someone else). It takes account of the quantum 

mechanical nature of our world. 

By "perceiving" is meant the most general form of perception, including the 

following situations: 'looking' or 'viewing', a physicist who measures a physical 

quantity, but also any completely abstract interaction between a complex quantum 

mechanical system and another. 

At an atomic and subatomic scale, all physical processes are calculated by quantum 

mechanics and by a wave function that describes the process spatial and temporal. It 

only has the disadvantage that all potentially measurable quantities exist as an infinite 

superposition of all possible discrete states. At least, as long as no measurement is 

made – that is, as long as nobody ‘looks’ at the system, since in the case of a 

measurement the quantum mechanical system has to decide for one of these infinitely 

many possible states. The physicists call this the collapse of the wave function 

following the 'Copenhagen interpretation' and are still not happy about it. One 

conceivable alternative that avoids this collapse of the wave function is the ‘many 

worlds’ hypothesis of quantum mechanics, which states that our entire universe splits 

into several universes, depending on which process is considered (caused by a 

measurement). 

This leads to the level III multiverse. From a philosophical point of view it can be 

said that in such a multiverse everything occurs (all possible events happen, in any 

of the infinite many plane III universes), which can occur at any time. 

In the level VI multiverse, the restriction of the uniform equations of physics also 

fails. Each universe contains its own set of mathematical structures. Many of these 

type VI universes will be uninteresting, but many will be complex and powerful 

enough to create their own worlds within this level VI universe. 

 

Why do we digress so far? In order to show that the world in which we want to go is 

so unimaginably different to our own world, since it is a level VI world (after Max 

Tegmark) in which there is a completely different mathematics to that of our world. 

 

Now we finally come to our OCRON beings. Let us suppose that the world of 

mathematics in this world is versatile and powerful enough to create a world with a 

similar complexity and diversity to ours. There exists also life in this world: the 

inhabitants are the OCRONians mentioned above. 

They live there in communities, are intelligent, and they also pursue science, 

including mathematics, out of curiosity. They can also construct machines, computers 

and other devices for which they need mathematics as a tool. Their own mathematics 

is fundamentally different from our mathematics. 

The OCRONians cannot add, they can only multiply and raise to the power (and in 

some mysterious way also calculate logarithms to the base 2). They also do not 

calculate using numbers to which a unique value can be assigned, but they only 

calculate using OCRONs: the four different formal symbols ‘ ∗ ’, ‘ 2’, ‘ ^’, and ‘ 𝑃’. 
They can not say how large a number is, the terms 'size' or value of a number (in our 

sense) do not exist in their world. 

The concept of addition is alien to them, not just alien, for it simply does not exist in 

their world. They can multiply huge numbers effortlessly (in their world of course 

OCRONs) from childhood onward. Not even prime factors are a problem for them: 

they look at a number and can see in a fraction of a second whether it is a prime 
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number, or of which prime factors it is composed. 

Their computers also work without addition, since numbers are not stored in them as 

sum totals, but only as OCRON representations (which ultimately result in a product 

of prime factors). For programming and the unavoidable calculations that must occur 

when constructing machines, however, they must also be able to compare numbers 

and can determine if two numbers have the same ‘size’. 

And they may also have to carry out operations of the kind that we call ‘addition’ in 

our world (which actually can be done in their world, but only in a very roundabout 

way). Although the term ‘value’ of a number (of an OCRON) does not exist in their 

world, they also have an ability to determine without a concept of ‘size’ or ‘value’ 

which is the larger of two numbers, or whether they are of the same size. For this 

purpose they consult the ‘MATHOracle’. (MATHOracle consultation, see below).  

They can also ask the MATHOracle for a second operation, which they use in their 

computations: the ORACLELog operation (in our world, this is called the logarithm 

to base 2). 

The OCRONians have to perform 'additions' (this term is known only to us) becau

 

 

se of their physical equations, but they do not know that we call this process in our 

world 'addition' and that we have a much simpler method of doing so. They use a 

rather complicated method for this: to add two OCRONs o_1 and o_2, they write (we 

call the result o_3): 

 

𝑜3=ORACLELog[2𝑜1^2𝑜2^ ∗].  
 

In our mathematical language this reads as follows: 𝑜3 = Log2(2
𝑜1 ⋅ 2𝑜2). 

 

The OCRONians call the oracle logarithm the 'ORACLELog' symbol. 'ORACLELog' 

returns either an OCRON or nothing. Together with the function 'ORACLEValue' 

(which can only supply one of the three values 'smaller', 'greater' or 'equal', these are 

the two mathematical operations for which the OCRONians can query the 

MATHOracle). 

 

The methods 'ORACLEValue' and 'ORACLELog' are not really understood by the 

OCRONians, but this method is intuitively familiar to all OCRONians. They can 

interrogate the 'MATHOracle' and it will always give them the right answer to these 

questions within a fraction of a second. Each OCRONian has access to the 

MATHOracle from any location and at any time in a mysterious way. The 

OCRONian computers also enjoy such access. The mathematicians among the 

OCRONians now state that there can exist quite different OCRONs, which provide 

the same result in the MATHOracle consultation with 'ORACLEValue'. 

By probing (‘trial and error’) and ORACLEValue consultations, they discover all 

possible OCRONs that give the same value. 

The cleverest mathematicians among the OCRONians have therefore wrestled for 

many years with the question of whether there is a method based on an algorithm, 

instead of the random 'try-out' in the search for 'equivalent' OCRONs, with which 

'equivalent' OCRONs could be transformed into each other (and thereby, for example, 

simplified). This would have made the work of the OCRONian engineers much 

easier, since they would have found a quick method for the conversion of OCRONs 
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instead of random testing, and they would not need to consult the MATHOracle (at 

least for their complicated 'addition') with 'ORACLEValue’. 

Clever OCRONian mathematicians also found that the consultation with 

ORACLELog would also be invalid, provided that they had an algorithm that could 

produce all the equivalent OCRONs by reforming. 

For the discovery of such an algorithm, a prize was offered in the OCRONian world. 

 

Here is an example: multiplication of 8 ∗  4 looks in our world like: 8 ∗ 4 = 32. 

 

In the world of the OCRONians: 22P^ times 22^ gives 22P^22^ ∗ (OCRONians 

multiply by simply concatenation of OCRONs and appending a ′ ∗′). 
The OCRONians are now able to determine by random testing and ORACLEValue 

interrogations that, for example, 22P ^ 22 ^ * has the same value as 22PP ^. 

However, they have no algorithm that produces the equivalent OCRON 22PP ^. 

 

In our world, mathematicians and logicians speak of a (typographic) formal system. 

OCRONians have to work hard with symbols to solve simple things like additions by 

randomly ‘rolling dice’. For them the access into the 'higher' logical world in which 

addition exists is denied! 

Poor OCRONians! How does the story continue? Will the smartest OCRONians 

succeed in finding such an algorithm? 

Let us think of two possible (fictional) scenarios of the story. 

 

Scenario 1: an OCRONian mathematician finds an algorithm for transforming 

equivalent OCRONs into each other. He is celebrated and receives the OCRONian 

‘Fields Medal’. The MATHOracle has no longer to be consulted for the 'additions'. 

Indeed, the solution is complicated (for the calculation, solutions have to be found 

with the aid of complicated recurrence rules and rules that in turn invented new rules), 

but it is still a method to bypass the MATHOracle consultation. In addition, the old 

method associated with the 'ORACLEValue' consultation always involves boring 

random probing, with the result that the complicated method with recursive rules for 

long OCRONs works unbeatably better than the random method. 
 

 

Scenario 2: a clever OCRONian named ‘Gocroedel’ finds a proof that the axiomatic 

system of OCRONian mathematics is simply too 'weak' and too lacking in 'power' to 

solve the problem of the transformation. He claims that the statement: 

‘22P^22^*’ is equivalent to ‘22PP^’ is indeed true but that it cannot be proved with 

OCRONian mathematics. This implies that no such algorithm can be found. For this, 

Gocroedel also receives the OCRONian ‘Fields Medal’, but the OCRONians cannot 

really look forward to it. 

 

The attentive reader has probably realized what ‘explosive’ is hidden in scenario 

1: 

 

If Scenario 1 were true, then we could learn from the OCRONians (above 

referred to as 'poor'): we could adopt their 'transformation algorithm' and 

would have a quick method for the factorization of numbers: we would simply 

have to separate the number to be factored into a sum of two numbers whose 
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prime factorization we know (more precisely, whose OCRON representations 

we know). Then we prepend a ‘𝟐’ symbol at the beginning of the respective 

OCRONs, append an ‘^’ symbol at the end of both OCRONs, concatenate both 

the new OCRONs (OCRON multiplication) and append a ‘∗’ symbol at the end. 

If the second summand is 𝟏, then the thing is even simpler: the second OCRON 

is simply the symbol ‘𝟐’. Finally, we transform the concatenated OCRON into 

an equivalent OCRON with the help of the mysterious algorithm, so that at the 

end of the OCRON a '^' symbol is placed, then easily get the logarithm to the 

base 2 (by discarding the leading ‘2’ and the last symbol ‘^’), and voilà! 

We have a product representation (which is implicit in every OCRON) of the 

number to be factored! If the resulting OCRON does not have a '∗’ or '^' symbol 

at the end, but a '𝑷' symbol, then the number to be factored is a prime number. 

We would have solved the factorizing problem on a pure typographical level by 

applying typographic transformation rules. 

 

 

Here a few examples: 

 

We examine the number 𝟑𝟕. Additive composition: 𝟑𝟕 = 𝟑𝟔 + 𝟏: 

In OCRON notation:  

36 =  22^2𝑃2^ ∗ -> (brackets inserted for the sake of clarity) 

(𝟐𝟐𝟐^𝟐𝑷𝟐^ ∗ ^)(𝟐) ∗->(MATHOracle consultation) 𝟐𝟐𝟐^𝟐𝑷 ∗ 𝑷^ 
(logarithm: discard the 2 and ^)-> 𝟐𝟐^𝟐𝑷 ∗ 𝑷, prime number! 

Thus, we have shown that 37 is a prime number, only by dealing with OCRONs. 

 

We examine the number 𝟏𝟒𝟑. Composition: 𝟏𝟒𝟑 =  𝟕𝟏 + 𝟕𝟐: 

In OCRON notation: 

71 =  22^2𝑃𝑃 ∗ 𝑃, 72 =  22𝑃^2𝑃2^ ∗ -> 

(𝟐𝟐𝟐^𝟐𝑷𝑷 ∗ 𝑷^)(𝟐 𝟐𝟐𝑷^𝟐𝑷𝟐^ ∗ ^) ∗->(MATHOracle consultation) 

𝟐𝟐𝑷𝑷𝑷𝟐𝟐𝑷 ∗ 𝑷 ∗ ^ 

(logarithm: discard the 2 and ^)-> 2𝑃𝑃𝑃22𝑃 ∗ 𝑃 ∗ = (2𝑃𝑃𝑃)(22𝑃 ∗ 𝑃) ∗ 
Result: factors 𝟐𝑷𝑷𝑷 (= 𝟏𝟏) and 𝟐𝟐𝑷 ∗ 𝑷 (= 𝟏𝟑)  
Thus we have factorized 143 by means of OCRON manipulation into the factors 11 

and 13. 

 

Note: the transformation without a MATHOracle consultation is also difficult in our 

world, because we have to calculate explicitly the value of  

𝟐𝟐𝟐^𝟐𝑷𝑷 ∗ 𝑷^𝟐 𝟐𝟐𝑷^𝟐𝑷𝟐^ ∗ ^ ∗: 
11150372599265311570767859136324180752990208, and then reconvert 

this value back to an OCRON (which is then transformed). 

 

These examples show that by means of type 4 OCRONs we can factorize numbers 

by pure, formal typographic manipulation of symbols, provided that we have access 

to the MATHOracle! 

 

There remains only the 'small' problem, how we can circumvent the MATHOracle 

consultation and find the fabulous algorithm! 

Before we begin searching for this algorithm, we should first determine whether or 

not the entire problem belongs to the category of 'unprovable' statements. In this case, 
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it would be utterly impossible to find such an algorithm (at least within OCRONian 

mathematics). 

 

(Addendum:) 

For this, the author has found a truly wonderful algorithm, but the margin is too small to 

contain it… 

-end of thought experiment- 
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11 PRIME NUMBERS AND THE “MATRIX”  SOFTWARE: ARE 
THERE RULES FOR PRIMES? 

11.1 RULES FOR DIFFERENCES OF THE  NTH ORDER 

This chapter examines numbers using the matrix software59. For this reason, this software 

and its functionality should be briefly presented here. 

Matrix is an application that makes it possible to create a rule network (i.e. a set of rules) 

from given data that are somehow arranged causally and that represent a sequence of 

states of an arbitrary system. This set of rules describes the individual transition 

probabilities of the system from one state to the next state following. 

With the aid of these transitional probabilities, the matrix can produce an arbitrarily long 

sequence of states of this system. In principle, this is a more general Markov chain with 

transition probabilities. However, the entire "history" of a process can be included in the 

calculation of the transition probabilities. In addition, the matrix can also provide 

'termination probabilities' (i.e. the probability that a sequence of states ends), as well as 

the opposite (i.e. the creation of a state 'ex nihilo' at the start of a new state sequence). 

In its simplest form, the matrix can also simply be used to store highly dimensionally 

structured data (hence the name 'matrix'), since it is basically a high-dimensional pointer 

matrix (with variable dimension length). 

The matrix can be applied to almost all systems. The requirements for applicability are 

very general: the state of the system at a certain starting point must be described by a set 

of integer (also negative) numbers. There should be enough material about the behaviour 

of the system. Once the matrix has been fed with data about a system, one can read from 

the matrix as from an infinite stream. Given a suitable selection of the parameters, this 

'stream' will always also provide novel transitions, i.e. reading from the matrix is indeed 

a creative process. In the matrix itself, no sequences of states are stored; only rules, which 

are much shorter. When reading from the matrix, the intelligence of the matrix can be 

adjusted. 

Turning on high intelligence, the result will be close to the material with which the matrix 

was originally fed; with low intelligence, more and more random elements will appear. 

The result of the output when reading appears much more intelligent than the simplicity 

of the rules suggests. Somehow the matrix seems to store the knowledge about the 

behaviour of a system not only locally in the rules but holistically in the totality of all 

rules. If, for example, you remove part of the rules, the result will not change rapidly. 

 

Let's make a first test: we set the maximum rule length to 20 and feed the matrix with the 

sequence of 1st order differences of the prime number sequence and look at the 

frequencies of the calculated rule lengths: 

 

For the first 1000 prime numbers (2-7919): 

Matrix finds 2581  rules, of which 1093  are unique rules, the maximum of the 

frequencies is at rule length 5, the longest rule length is 10. The size of the matrix data 

file is 107 KB. 

 

 
59 http://www.kmatrix.eu 

http://www.kmatrix.eu/
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For the first 10000 prime numbers (2-104729): 

Matrix finds 25092  rules, of which 10590  are unique rules, the maximum of the 

frequencies is between rule length 5 and 6, the longest rule length is 15. The size of the 

matrix data file is 1.00 MB. 

 

For the first 100000 prime numbers (2-1299709): 

Matrix finds 245731  rules, of which 104032  are unique rules, the maximum of the 

frequencies is at rule length 6, the longest rule length is 15. The size of the matrix data 

file is 9.78 MB. 

 

 

Figure 106. Matrix: frequency of rule lengths at 1st order difference sequence of the first 100000 
prime numbers 
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Figure 107. Diagram: frequency of rule lengths for 1st order difference sequence of the first 
100000 prime numbers 

Mathematica: 

data=Import["/primes/data_and_Docs/StatisticsPrimesRulesFrom100000PrimesPrepro

c1.txt",{"Data",All,{1,2,3,4}}]; 

ListLinePlot[{Transpose[data][[2]],Transpose[data][[4]]},AxesLabel-

>Automatic,PlotRange->All,Mesh->Full,InterpolationOrder->2,PlotLegends->{"all 

rules","unique rules"},ImageSize->Large] 

 

For the first 1000000 prime numbers (2 −  15485863): 

Matrix finds 2422245 rules, of which 1030290 are unique rules, the maximum of the 

frequency is between rule length 6 and 7, the longest rule length is 15. The size of the 

Matrix data file amounts to 96.2 MB. 
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Figure 108. Matrix: frequency of the rule lengths for 1st order difference sequence of the first 
1000000 prime numbers 

 

 

Figure 109. Frequency of rule lengths for 1st order difference sequence of the first 1000000 
prime numbers 

It looks as though a sequence of 15 consecutive prime numbers is sufficient to 

compute the 16th succeeding prime number using the matrix rule network. 
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However, with an increasing number range, the number of rules also increases linearly:

 

Figure 110. Number of rules calculated from the 1st order differences prime sequence in 
dependence of the range  10𝑛 

Mathematica: 

data={{1,24,10},{2,271,114},{3,2581,1093},{4,25092,10590}, 

{5,245731,104032},{6,2422245,1030290}}; 

ListLogPlot[{Transpose[data][[2]],Transpose[data][[3]]},AxesLabel-

>Automatic,PlotRange->All,Mesh->Full,Joined->True, InterpolationOrder-

>2,PlotLegends->{"all rules","unique rules"}, PlotLabel->{"# rules for 

increasing number of primes 10^n"},ImageSize->Large] 

 

For higher order differences, we observe the following behaviour for different orders: 

Order of 

difference 

Number of 

primes 

Longest 

rule 

Number 

of rules 

Number of 

unique  

rules 

Size of file 

(KB) 

Minimum 

value 

Maximal 

value 

1 10 6 24 10    

 100 10 271 114    

 1000 10 2581 1093 107 1 34 

 10000 15 25092 10590 1003 1 72 

 100000 15 245731 104032 9777 1 114 

 1000000 15 2422245 1030290 96206 1 154 

2 100 9 254 111    

 1000 9 2506 1074    

 10000 14 24431 10468    

 100000 14 241138 103273    

 1000000 14 2386607 1024963 95478 -148 144 

4 100 7 233 101    

 1000 7 2327 1031    

 10000 12 23092 10183    

 100000 12 229102 101283 9064 -332 304 

 1000000 12 2282543 1009733 90192 -448 460 

8 100 3 189 91    

 1000 4 2247 991    

 10000 8 21252 10002    

 100000 8 211227 100051    

 1000000 8 2225543 1000473 88671 -5962 5638 

10 100 3 182 89  -1538 1606 

 1000 4 2138 989  -5000 4608 
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 10000 6 22301 9992  -9488 10238 

 100000 6 206803 99993 8512 -14476 15640 

 1000000 6 2057953 1000029 85678 -20520 22450 

14 100 3 172 85    

 1000 3 1995 985    

 10000 3 20946 9985    

 100000 4 226154 99985 8960 -206992 221570 

 1000000 4 2094308 999985 81947 -298794 323414 

15 100 2 169 84    

 1000 3 1976 984    

 10000 3 20498 9984 847 -277842 284414 

 100000 4 222665 99984 9066 -428562 415348 

 1000000 4 2151843 999985 84230 -622208 613240 

16 100 2 167 83    

 1000 3 1970 983    

 10000 3 20247 9983    

 100000 3 215514 99983 8843 -843910 790698 

 1000000 4 2222938 999984 87189 -1235448 1147684 

20 100 2 159 79    

 1000 3 1960 979  -3837740 3855400 

 10000 3 19985 9979  -8272220 7732656 

 100000 3 2014)90 99979 8655 -12428154 11690554 

 1000000 3 2101677 999979 89894 -18210894 17092050 

Figure 111. What do the rules for nth order difference sequences of prime numbers look 
like? 

 

Figure 112. Matrix: frequency of rule lengths for 14. order difference sequences of the first 
100000 prime numbers 

Also interesting is the dependency of the maximum rule length on the order of the 

calculated prime difference sequences. The rule length cannot be less than 2 (the 'ex 

nihilo' rule and the simplest rule that calculates a successor for each value). For high 

orders of the difference sequences, this value converges to 2, which reflects the fact that 

each value occurs at most once in the considered difference sequence. This is not 

surprising and was to be expected. 

Here is a diagram describing this dependency in the range of the first 1,000,000 prime 

numbers (prime difference sequences up to the order 20 were evaluated): 
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Figure 113. Max. rule lengths in prime difference sequences of order n for the first  106 prime 

numbers 

Here are a few statistics for sequences of nth order differences. 

(Mathematica programs can be found in the Appendix). 

The differences of the nth order can easily be calculated with Mathematica 

 

Here, for example, the difference sequence of the first 100,000 primes for order 1: 

 
range=100000; order=1; 

data=Differences[Prime[Range[range]],order]; 

 

Of the 99999 values, there are actual 54 different values: 
differents=Union[data] 

{1,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,46,48

,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80,82,84,86,88,90,92,94,

96,98,100,106,112,114} 

 

Of the 99999 values, there are 49 values that occur at least twice: 
doubles=With[{sData=Sort@data},DeleteDuplicates@sData[[SparseArray[Uni

tize@Differences@sData,Automatic,1]["AdjacencyLists"]]]] 

{2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,46,48,5

0,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80,82,84,86,88,90,92,96,98

,100} 

 

Of the 99999 values, there are 5 values that are unique: 
{1,94,106,112,114} 

 

For the difference sequence of the first 100,000 primes for order 20, 

the whole thing looks completely different: 

 

Of the 99999 values, there are 98426 different values: 
differents=Union[data] 

{ -12428154,-10525630,-10259274,…, 10253734,11413498,11690554} 

Of the 99999 values, there are 1531 values that occur at least twice: 
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doubles=With[{sData=Sort@data},DeleteDuplicates@sData[[SparseArray[Uni

tize@Differences@sData,Automatic,1]["AdjacencyLists"]]]] 

{ -5979490,-5554652,-5075372,…, 4158040,5065004,6712100} 

 

Of the 99999 values, there are 96895 values that are unique: 

These trends are shown in the following diagrams (the ordered nth order differences). 

Where there are many close-lying values, the curve is flat; where the values occurring are 

far apart, the curve becomes steep. This is typically the case when the absolute values 

become large. 

 

Figure 114. Sorted prime difference values of order 10 of the first 100000 primes  

Mathematica: 

range=100000; data=Sort[Differences[Prime[Range[range]],10]]; 

ListLinePlot[data,AxesLabel->Automatic,PlotRange-

>All,InterpolationOrder->0,ImageSize->Large] 
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Figure 115. Sorted prime difference values of order 10 in the middle range (2000 values) of the 
first 100000 prime numbers  

 

Mathematica: 

range=100000; 

data=Sort[Differences[Prime[Range[range]],10]]; 

ListLinePlot[data[[range/2-1000;;range/2+1000]]/2,AxesLabel-

>Automatic,PlotRange->All,InterpolationOrder->0,ImageSize->Large] 

 

It can be seen that the values are dense in the middle region and become thinner in the 

outer region. 
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12 THE ABC  CONJECTURE 

12.1 GENERAL 

The ‘abc conjecture’ is one of the top ten unresolved mathematical conjectures. Many 

mathematicians are of the opinion that it is presently the most important unsolved problem 

in number theory. What makes it particularly interesting is that it tries to bring together 

the two worlds of addition and multiplication. The simplest form of the abc conjecture is 

as follows: 

 

Let 𝒂 + 𝒃 = 𝒄 with 𝑎, 𝑏, 𝑐 ∈ ℕ. 

Let furthermore a and b be coprime to each other (have no common divisors). For this 

there are several spellings: 

𝒂 ⊥ 𝒃  or 𝐠𝐜𝐝(𝒂, 𝒃) = 𝟏  

Due to the addition relation, 𝑎 and 𝑐 as well as 𝑏 and 𝑐 are also mutually coprime. The 

abc conjecture now states that for such additive triplets, the multiplicative structure of the 

triplets is strongly restricted due to their additive context: 

The product of all occurring prime factors, raised to a power which is arbitrarily 

close to 1: (𝐫𝐚𝐝(𝒂𝒃𝒄))
𝟏+𝜺

 is almost always larger than or equal to the largest 

number of the triple (𝒄), with 𝜺 being arbitrarily small. 

'Almost' in mathematics means: “all but finitely many”. 

The so-called strong abc conjecture now states that there are only finitely many 

'exceptions', so that (𝐫𝐚𝐝(𝒂𝒃𝒄))
𝟏+𝜺

< 𝒄, with 휀 being arbitrarily small. 

These exceptions are called abc hits. Examples of such abc hits are the triples: 

{1,8,9}, {5, 27, 32}, {32, 49, 81], etc. 

Occasionally, abc triples satisfying the slightly ‘softer’ condition 𝐫𝐚𝐝(𝒂𝒃𝒄) ≤ 𝒄 (i.e 휀 =
0) are also referred to as abc hits. In this case, however, it has been proved that there are 

an infinite number of hits.  

Depending on how strongly these hits deviate from the prediction of the abc conjecture, 

they are weighted by the value 

𝑞 =
ln 𝑐

ln rad(𝑎𝑏𝑐)
 (152) 

 

This value q is also referred to in the literature as 'quality', 'potency' or 'abc ratio'. It is a 

measure of the growth of c with the prime content (rad(𝑎𝑏𝑐)) of the triple, since q 

represents the solution of [rad(𝑎𝑏𝑐)]𝑞 = 𝑐. To date (as of Feb. 2016), only 237 𝑎𝑏𝑐 
triples with a 'quality' q> 1.4 have been discovered. There are also other ‘ratings’ of these 

abc hits.60 

An abc hit is called 'unbeaten' (unmatched), if every known 𝑎𝑏𝑐 hit with a larger 𝑐 has a 

smaller quality. The world record (abc hit with the highest quality) is (as of Feb. 2016): 

 

 

{𝒂𝒃𝒄} = {𝟐, 𝟔𝟒𝟑𝟔𝟑𝟒𝟏, 𝟔𝟒𝟑𝟔𝟑𝟒𝟑} = {𝟐, 𝟏𝟎𝟗 ⋅ 𝟑𝟏𝟎, 𝟐𝟑𝟓}, where 𝐫𝐚𝐝(𝒂𝒃𝒄)

= 𝟐 ⋅ 𝟐𝟑 ⋅ 𝟏𝟎𝟗 = 𝟏𝟓𝟎𝟒𝟐 

 
60 https://de.wikipedia.org/wiki/abc-Vermutung#Weitere_Bewertungen_eines_abc-Treffers 

https://de.wikipedia.org/wiki/Abc-Vermutung%23Weitere_Bewertungen_eines_abc-Treffers
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If the abc hypothesis were to be correct, a whole series of important numerical theorems 

would follow from its proof (for example, the proof of the famous Fermat hypothesis 

would be reduced to a few lines). 

 

The Japanese Shinichi Mochizuki published back in 2012 a proof of the abc conjecture. 

The status of his proof within the mathematical community is still undecided. The proof 

(which runs to 500 pages) is very difficult to understand – even for specialists in this 

field61. The comments of mathematicians on his proof range from 'paper from the future' 

to 'extraterrestrial'. Here is another mathematically precise formulation of the abc 

conjecture: 
 

For any arbitrarily small 휀 > 0, there exists a constant 𝐶𝜀 such that for any arbitrary triple 

of natural numbers 𝑎, 𝑏, 𝑐 that are mutually coprime to each other, satisfying the equation 

𝒂 + 𝒃 = 𝒄, the following inequality holds (abc conjecture): 

 

𝐦𝐚𝐱(𝒂, 𝒃, 𝒄) ≤ 𝑪𝜺 ∏ 𝒑𝟏+𝜺

𝒑|𝒂𝒃𝒄

 (153) 

 

Note: (as of Feb. 2016) 33.18 million abc hits are known. There are only about 5 

mathematicians anywhere in the world who can claim to have read the entire proof 

including all the papers of Mochizuki.62 

 

Here are a few graphic representations (created using the following Mathematica 

program): 
 

Mathematica: 

rad[n_]:=Times@@First/@FactorInteger[n]; 

isABC[a_,b_,c_]:=(If[a+b!=c||GCD[a,b]!=1,Return[0]];r=rad[a*b*c];If[r<

c,Return[1],Return[0]]); 

isC[c_]:=(For[a=1,a<=Floor[c/2],a++,If[isABC[a,c-

a,c]!=0,Return[1]]];Return[0]); 

tab=Select[Range[10000],isC[#]==1&] 

ListLinePlot[tab,InterpolationOrder->0,PlotStyle->Black,PlotLabel-

>"abc-conjecture: possible c-values"] 

 

 
61 http://www.nature.com/news/the-biggest-mystery-in-mathematics-shinichi-mochizuki-and-
the-impenetrable-proof-1.18509 
62 https://en.wikipedia.org/wiki/abc_conjecture 

http://www.nature.com/news/the-biggest-mystery-in-mathematics-shinichi-mochizuki-and-the-impenetrable-proof-1.18509
http://www.nature.com/news/the-biggest-mystery-in-mathematics-shinichi-mochizuki-and-the-impenetrable-proof-1.18509
https://en.wikipedia.org/wiki/Abc_conjecture
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Figure 116. abc hits: the first 91 possible c-values (9-10000) 

abc hits are very rare. Among the 15.2 million possible abc triples up to 𝑛 =  10000, 

there are only 120 hits, 91 of them are different hits. To date (Feb. 2016), only 237 abc 

hits with a quality 𝑞 >  1.4 have been discovered.  

Here are the abc hits up to 10000 (only possible 𝑐-values, without multiple hits): 

 
{2,9,32,49,64,81,125,128,225,243,245,250,256,289,343,375,512,513,539,6

25,676,729,961,968,1025,1029,1216,1331,1369,1587,1681,2048,2057,2187,2

197,2304,2312,2401,2500,2673,3025,3072,3125,3136,3211,3481,3584,3773,3

888,3969,3993,4000,4096,4107,4131,4225,4235,4375,4913,5041,5120,5312,5

427,5632,5776,5832,6144,6250,6400,6561,6625,6655,6656,6859,6860,6875,6

912,7744,8000,8019,8192,8576,8748,9261,9317,9375,9376,9409,9801,9826,9

984,10000} 
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Figure 117. abc hits: the first 868 possible c- values (9-1000000) 

One can clearly see that the abc hits become rarer with increasing size. 

Among the 380 million possible abc triples below 50000, there are 276 abc hits.

 

Figure 118. Max. ‘ quality’ of  abc triples as a function of c (with 138 abc hits) in the range up to 
20000 
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Clearly it can be seen that abc hits are very rare. In the 'non-critical' range with 𝑞 < 1, 

clear structures can be seen. One cannot escape the feeling that further surprises are in 

store… 

The first abc hits in the range up to 2000 together with their qualities (in the case of 

multiple abc hits for the same 𝑐, the corresponding maximum quality was taken) are: 

{{2,1.},{9,1.22629},{32,1.01898},{49,1.04124},{64,1.11269},{81,1.29203},{125,1

.0272},{128,1.42657},{225,1.0129},{243,1.3111},{245,1.02883},{250,1.03261},{25

6,1.27279},{289,1.22518},{343,1.09175},{375,1.10844},{512,1.19875},{513,1.3175

7},{539,1.02512},{625,1.20397},{676,1.09219},{729,1.13667},{961,1.0048},{968,1

.03443},{1025,1.1523},{1029,1.29721},{1216,1.1194},{1331,1.24048},{1369,1.0299

1},{1587,1.00607},{1681,1.04391}} 

Mathematica program: please contact the author. 

 

 

12.2 THE  ABC CONJECTURE AND GOCRONS: IS THERE A CONNECTION? 

The abc conjecture creates a connection between the world of addition and the world of 

multiplication, in that it predicts that additive operations also have a certain influence on 

the multiplicative structures of the objects under consideration. What could be more 

natural, then, than to investigate the abc conjecture with objects that perfectly represent 

multiplicative properties: the OCRONs and GOCRONs (see 10.2.2)? We shall restrict 

ourselves here to type 4 OCRONs and their extensions (EOCRONs). Since we want to 

make quantitative statements, we are not using character strings (that is, OCRONs), but 

their ‘Gödel numbered’ relatives: GOCRONs. 

First let’s take a look at our additive structure:  

We look for the set of all natural numbers 𝑎 and 𝑏, the sum of which gives a fixed value 

𝒂 + 𝒃 = 𝒄, 𝒂, 𝒃 ≥ 𝟏 𝐚𝐧𝐝 𝒂, 𝒃, < 𝒄  and especially their GOCRON4 values 

𝑔(𝑎), 𝑔(𝑏) 𝑎𝑛𝑑 𝑔(𝑐) , for example 𝑔(𝑎) = nToEGOCRON4(𝑎)  (using the function 

nToEGOCRON4() from the OCRON Mathematica library, which can be found in the 

Appendix). We shall also investigate the influence of the additional boundary condition 

of the abc conjecture that 𝑎 and 𝑏 are to be mutually 'coprime' (i.e. have no common 

divisor). 

We interpret the values {𝑔(𝑎), 𝑔(𝑏)} as points in the plane, and assign to them a function 

value 𝑓[𝑔(𝑎), 𝑔(𝑏)] that forces the whole thing to take on a multiplicative structure 

𝑓[𝑔(𝑎), 𝑔(𝑏)] = 𝑔(𝑎 ⋅ 𝑏). 

Since GOCRON values can become very large quickly, we prefer logarithmic values 

(which are better suited to the material in question). Thus, our task can be precisely 

described as follows. We will search for a set of integer abc triples in which an additive 

structure exists between 𝑎 and 𝑏, but a multiplicative value is assigned to the third value: 

𝑴𝒂𝒃𝒄 = {𝐥𝐧𝒈(𝒂), 𝐥𝐧𝒈(𝒃), 𝐥𝐧𝒈(𝒂
⋅ 𝒃)},𝐰𝐡𝐞𝐫𝐞 𝒈(𝒙): 𝐠𝐨𝐞𝐝𝐞𝐥𝐜𝐨𝐝𝐞𝐬 𝐨𝐟 𝐭𝐡𝐞 𝐎𝐂𝐑𝐎𝐍𝐬 

𝐚𝐬 𝐰𝐞𝐥𝐥 𝐚𝐬 𝐭𝐡𝐞 𝐛𝐨𝐮𝐧𝐝𝐚𝐫𝐲 𝐜𝐨𝐧𝐝𝐢𝐭𝐢𝐨𝐧: 𝒂 + 𝒃 = 𝒄 𝐚𝐧𝐝 𝒂 ⊥ 𝒃 

 

(154) 
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If we look at the structure of the set 𝑀𝑎𝑏𝑐, then we get a surprise, because the three-

dimensional points of 𝑀𝑎𝑏𝑐 all lie (with a deviation of about 2 to 3%) on a plane with the 

incredibly simple equation 𝑧 = 𝑥 + 𝑦 + const, where the value const depends only on 𝑐! 

𝑴𝒂𝒃𝒄 can be represented approximately by: z=x+y+const (155) 

 

This seems to apply to all 𝑐 ∈ ℕ (the author has not yet found a counterexample). If the 

boundary condition 𝒂 ⊥ 𝒃 is omitted, then 𝑴𝒂𝒃𝒄 does not lie on a plane for any integer 𝑐. 
The structures seem to be much more complicated for this general case. For the case 

where 𝑐 is a prime number, 𝑴𝒂𝒃𝒄 likewise forms a plane, even if we omit the boundary 

condition a⊥b, since this condition is then automatically fulfilled (the two summands of 

a prime number are automatically coprime with each other). 

Unfortunately, the points of 𝑴𝒂𝒃𝒄 are not exactly on a plane, but exhibit around 2 to 3 

per cent ‘noise’. If the relation applied exactly, then we would have found a method of 

calculating the factorization of a number (in our case 𝑐) from the values 𝑎 and 𝑏 (or 

ln𝑔(𝑎), ln𝑔(𝑏) respectively). Conversely, the factorization could be calculated solely 

from 𝑐, by a projection of 𝑐 onto the 𝑥 − 𝑦 axis). In general, one could also imagine a 

method that searched only by evaluating the plane equation by integer values 𝑎 and 𝑏, 

since the determination of 𝑔 (𝑎) and 𝑔 (𝑏) can demand a great deal of computing time 

for large 𝑎 and 𝑏. 

One assumes that if we were to choose a different, more suitable, GOCRON system (the 

calculation and the Gödel numbering allow a degree of ‘freedom of choice’ in the 

selection of parameters), the noise described could be reduced or even eliminated 

altogether. There is still much work to do here! 

Here are a few plots of different sets of 𝑴𝒂𝒃𝒄: 
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Figure 119. 𝑀𝑎𝑏𝑐: logarithmic Gödel GOCRON4 codes of abc points . C=10007 (prime number), a 
and b are coprime (different views).  

Note: the plot in Figure 119 does not change if we omit the boundary condition 𝑎 ⊥ 𝑏, 

because 1007 is a prime number. 

Mathematica program: please contact the author. 
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Figure 120. 𝑀𝑎𝑏𝑐: logarithmic Gödel GOCRON4 codes of abc points. C=10008, a and b are coprime 
(different views).  

 

(Mathematica programs for the calculations can be found in the Appendix) 

 

Figure 121. 𝑀𝑎𝑏𝑐: logarithmic Gödel GOCRON4 codes of abc points. C=10008, a and b not coprime, 
(different views). The 10004 points are spatially distributed.  
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Figure 122. 𝑀𝑎𝑏𝑐: logarithmic Gödel GOCRON4 codes of abc points. C=100002, a and b not coprime, 
(different views). The 99998 points are spatially distributed.  

 

 

Figure 123. 𝑀𝑎𝑏𝑐: logarithmic Gödel GOCRON4 codes of abc points . C=100002, a and b coprime 
(different views). The 28558 points lie approximately on a plane.  
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Figure 124. 𝑀𝑎𝑏𝑐: logarithmic Gödel GOCRON4 codes of abc points . C=10007 (prime number), 
(different views). The 100003 points lie approximately on a plane.  

12.3 THE SET 𝑀𝑎𝑏𝑐 AND ITS PLANE-EQUATION 

As we have seen in the last chapter, the points 𝑀𝑎𝑏𝑐 lie approximately on a plane. We 

will now take a closer look at this issue. At first we notice that the ‘plane principle’ applies 

to all variants of type 4 GOCRONs: the normal GOCRONs, M2GOCRONs (which 

belong to the OCRONs, in which the always leading ‘2' has been discarded, as well as 

EOCRONs (the extended GOCRONs)). The difference between the different types is in 

the range of values (the normal GOCRONs are at least one order of magnitude larger than 

their relatives) and in their 'retransformability' into the range of the normal numbers 

(EGOCRONs can be ‘retransformed’ for any integer value > 2). We now investigate the 

dependence of the parameters of the corresponding plane-equation on the value 𝑐, as well 

as of various other parameters that might play a role in the calculation of the points 𝑀𝑎𝑏𝑐. 
As a criterion for a 'good' parameter choice, we take the 'standard error' that results from 

the method of least squares applied during the plane calculation from the set 𝑀𝑎𝑏𝑐. We 

use the Mathematica function NonliniearModelFit[…] with the model: 𝑧 = 𝑥 + 𝑦 + 𝑐3. 

Comparing the various Gödel code symbols used in the conversion of OCRONs into 

GOCRONs, it turns out that, for the (normal) type 4 GOCRONs, the following 

assignments of the 24 possible permutations of the set of code symbols give the best 

results: 

{“ ∗ ”, “P”, “2”, “^”} −> {0,2,3,1} and {“ ∗ ”, “P”, “2”, “^”}−> {1,2,3,0}. 
The following table shows the results: 

Table 25. c=100003. Fit parameter and  𝑐3 of the plane equations for  𝑀𝑎𝑏𝑐 (type GOCRON4) for 
different sets of Gödel symbols 

C 𝒄𝟑 Codetable: symbols/values Max. value Standard error t-statistics 
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100003 1.85733 1:{*,P,2,^},{0,1,2,3} 37.0455 0.000162446 11433.5 

100003 1.48688 2:{*,P,2,^},{0,1,3,2} 37.4114 0.000186537 7970.96 

100003 2.34062 3:{*,P,2,^},{0,2,1,3} 36.423 0.000200917 11649.7 

100003 1.44022 4:{*,P,2,^},{0,2,3,1} 37.3964 0.0000736448 19556.3 

100003 2.24673 5:{*,P,2,^},{0,3,1,2} 36.3821 0.000422527 5317.36 

100003 1.73226 6:{*,P,2,^},{0,3,2,1} 37.0015 0.000153876 11257.5 

100003 1.93765 7:{*,P,2,^},{1,0,2,3} 37.0444 0.000332613 5825.54 

100003 1.54166 8:{*,P,2,^},{1,0,3,2} 37.4107 0.000303486 5079.82 

100003 4.00103 9:{*,P,2,^},{1,2,0,3} 34.4163 0.00246733 1621.61 

100003 1.44418 10:{*,P,2,^},{1,2,3,0} 37.3804 0.0000698268 20682.3 

100003 3.79035 11:{*,P,2,^},{1,3,0,2} 34.4462 0.00303396 1249.31 

100003 1.738 12:{*,P,2,^},{1,3,2,0} 36.9777 0.000172422 10079.9 

100003 2.61489 13:{*,P,2,^},{2,0,1,3} 36.4189 0.000393053 6652.77 

100003 1.54569 14:{*,P,2,^},{2,0,3,1} 37.3949 0.000294348 5251.23 

100003 4.50595 15:{*,P,2,^},{2,1,0,3} 34.4009 0.00207401 2172.57 

100003 1.49486 16:{*,P,2,^},{2,1,3,0} 37.3796 0.000170018 8792.37 

100003 3.93228  17:{*,P,2,^},{2,3,0,1} 34.4473 0.00352994 1113.98 

100003 2.26812 18:{*,P,2,^},{2,3,1,0} 36.2903 0.000484516 4681.22 

100003 2.62617 19:{*,P,2,^},{3,0,1,2} 36.3757 0.00036176 7259.43 

100003 1.94952 20:{*,P,2,^},{3,0,2,1} 36.9981 0.000303674 6419.8 

100003 4.62145 21:{*,P,2,^},{3,1,0,2} 34.018 0.00222471 2077.33 

100003 1.87489 22:{*,P,2,^},{3,1,2,0} 36.9753 0.000122802 15267.6 

100003 4.25883 23:{*,P,2,^},{3,2,0,1} 34.0449 0.00320799 1327.57 

100003 2.37305 24:{*,P,2,^},{3,2,1,0} 36.288 0.000280365 8464.13 

Further tables with different methods of Gödelization and different values of 𝑐 can be 

found in the Appendix. 

An evaluation of these tables shows that code table No. 10 is (albeit narrowly) the 'winner' 

(with regard to the smallest standard error), if the summation of the OCRONs is 

performed in the normal order (left to right). In the case of the reverse order, the selection 

of a best Gödel code set is not so clear. In the following, we will use the Gödel code 

assignment {'*', 'P', '2', '^' -> {1, 2, 3, 0} for all OCRON4 types and the normal order of 

symbols (not 'reversed'). 

The program used for the evaluation can be found in the Appendix. 
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Figure 125. Plane of 𝑀𝑎𝑏𝑐 − points for c = 100003 (prime number) 

Mathematica program: please contact the author. 

 

 

The next table shows the relationship between 𝑐 and the plane parameter 𝑐3 with CT: 

no. of the Gödel code table, GT: GOCRON type (N: normal, M2: without, ‘2’ at the 

beginning of an OCRON, E: enhanced). 

 
Table 26. Different  𝑐3 -values for different GOCRONs and Gödel symbols  

c 𝒄𝟑(CT:10,  

GT: N) 

𝒄𝟑 (CT:10, 

(GT: E) 

𝒄𝟑 (CT:10, 

GT: M2) 

𝒄𝟑 (CT:4,  

GT: M2) 
𝒄𝟑 (CT:9, 

GT: M2) 

𝒄𝟑 (CT:12, 

GT: M2) 

10009 1.44418 1.65067 3.0335 3.01507 4.00661 2.9951 

30011 1.44423 1.65087 3.03373 3.01535 4.00661 2.99422 

100003 1.44418 1.65062 3.03347 3.01512 4.00103 2.99437 

1000003   3.03335 3.01497 4.00219 2.9946 

 

Summary 

 

The points of the set 𝑀𝑎𝑏𝑐 lie (with a deviation of 2-3%) on a plane with the equation 𝑧 =
𝑥 + 𝑦 + 𝑐3 (𝑐3 see above table). Since logarithmic values are taken in the calculation of 

the points (see (154)), the deviation from the 'fitted' values of the plane is, of course, 

substantially greater if 'delogarithmized' values are considered. In these deviations from 

the interpolated values of the equation, there is, so to speak, still a lot of hidden ‘structure’, 

which would have to be examined for further regularities. This simple model of the plane 

equation is not a help in finding a prime factor of a given number. For this, the points 

would have to lie much more precisely on the plane. 

 

However, the fact that the plane structure only occurs when the relation 𝒂 + 𝒃 =
𝒄 𝐚𝐧𝐝 𝒂 ⊥ 𝒃  applies is very interesting. If, for example, we don’t use the boundary 

condition 𝒂 ⊥ 𝒃, then there is no plane, but a widely dispersed, complicated spatial 

structure (see, for example, Figure 121). 

 

This fact indicates a connection with the abc conjecture. 
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13 PRIME NUMBERS IN THE NATURAL SCIENCES 

13.1 PRIME NUMBERS IN DNA CODE 

Many scientists think that primes also play a role in the construction and design of DNA 

sequences. Everyone knows the famous double helix of the DNA. Here are a few 

arbitrarily selected examples: 

 

Mathematica: 

Import[#,"PDB"]&/@{"http://files.rcsb.org/download/1BNA.pdb","http://f

iles.rcsb.org/download/208D.pdb","http://files.rcsb.org/download/5A0W.

pdb"} 

 

The following text is essentially the work of J.F. Yan, A.K. Yan and B.C. Yan.63  

 

Before dealing with the underlying idea, it is useful to look at a few basic properties of 

DNA and RNA. 

DNA is the carrier of the genetic information that is present in the cell nuclei of all living 

beings. These are huge chain molecules, which are composed of four different basic 

building blocks: the nucleotides. Each nucleotide consists of a phosphate group, a sugar 

(deoxyribose) and one of four possible organic bases (adenine, guanine, cytosine and 

thymine). 

The RNA (ribonucleic acid) is constructed by means of the information in the DNA. For 

the exact mechanism, the reader is referred to the relevant literature64. The RNA (in a 

similar way to the DNA) is composed of nucleotides, which in turn are composed of four 

different organic bases (adenine, guanine, cytosine and uracil). 

 

 
63 J. theor. Biol. (11991) 151,333-341 
64 e.g. http://www.dna50.org/ 

http://www.dna50.org/
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The first three bases are present in the RNA and in the DNA; the base thymine occurs 

only in the DNA and uracil only in the RNA. 

The organic bases are usually abbreviated by the letters A, G, C, T and U. These are the 

smallest information bits of DNA and RNA. The differences in the structure of RNA and 

DNA (uracil instead of thymine) are irrelevant to the information content we are 

considering. Therefore, for the sake of simplicity, we will only use the four bases A, G, 

C, and U (whereas, strictly speaking, it should be ‘T’ instead of ‘U’ in the case of the 

DNA). 

Each successive triplet of bases (also called a ‘codon’) is specifically assigned to a 

particular amino acid. The converse is not true: several different triplets may be assigned 

to the same amino acid. These triplets are the smallest information units of DNA and 

RNA. A few triplets (codons) contain no genetic information. However, they work as so-

called ‘stop’ triplets during replication and copying processes that take place during 

protein synthesis. There are also start-up triplets, which, however, also contain 

information: e.g. the triplet ‘AUG’ (methionine amino acid). 

For the four different bases there are 43 = 64 different possibilities for triplet formation. 

The amino acids occurring practically in nature (canonical, proteinogenic amino acids) 

are coded with the aid of 61 triplets. The three remaining triplets are 'stop' triplets. A very 

good representation can be found on the Internet.65 Some amino acids are encoded only 

by one triplet, some by 2,3, 4 or 6 different triplets. Note: the number 5 is absent as the 

number of amino acid forming triplets. 

What does all this have to do with primes? How do we get from base triplets to numbers? 

The answer is similar to that in Chapter 10.2.2.4: by 'Gödelization'. We assign a numerical 

value to each base triplet (our smallest information unit). There are several possibilities 

for this: 

Klaus Lange used in his work, Primes in the construction of the DNS 66 

G = 1, A = 3, C = 7, U = 9 and builds the number codes simply by using the decimal 

system. An example: alanine (= GCA with the code value 173). 

He then examines the resulting numerical values for their prime factor decomposition and 

discovers that at least 19 of the 20 canonical amino acids contain a triplet that represents 

a prime number. It is striking for him that the only amino acid to which no prime can be 

assigned as a triplet is methionine (Met = AUG). According to his system, this triplet has 

the value 391. Methionine is the only triplet that works as a so-called 'start signal' (see 

above). 

 

This number assignment appears to the author somewhat arbitrary. Better is the method 

of Yan (see above), in which A=0, C=1, U=2 and G=3. From this assignment, a unique 

set of "nucleotide numbers" (each of which can be assigned to an amino acid) is then 

constructed. Special cases are the following amino acids: 

 
65 https://de.wikipedia.org/wiki/Genetischer_Code 
66 http://www.primzahlen.de/primzahlen/dns.htm 

https://de.wikipedia.org/wiki/Genetischer_Code
http://www.primzahlen.de/primzahlen/dns.htm
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0: for stop signal (without name, UAA, UAG, UGA) 

1: for tryptophan (Trp, also Try), UGG 

2: for isoleucine (Ile), AUA, AUC, AUU 

3: for methionine (Met), AUG 

The principle for constructing a nucleotide number 𝑧 (𝑧 < 64) is as follows: 

Rule 1: z must be odd or 2. The values 1 and 2 are reserved for AAX triplets 

Rule 2: let us call prime numbers of the form 4𝑛 + 1 ‘P1 primes’ and primes of the 

form 4𝑛 +  3 ‘P3 primes’. From number theory, we know that P1 numbers can always 

be expressed in a unique way as the sum of two squares. Between 0 and 63 there are a 

total of 8 P1 primes. 

All P1 prime numbers < 64 that can be represented as the sum of 2 squares, are 

equivalent to the fourfold 'synonym' codons that are generated when we specify the first 

two bases (of the three possible ones). 

 

The next procedure is to split up all 64 possible codons into 4 groups. 

Group 1 are the Diophantine solutions of the equation 𝑧 = (2𝑖 + 1)2 + (2𝑗)2 

Nucleotide numbers Synonym codons (X=A, 

C, U or G) 

Name of the amino acid  

12 + 22 = 5 ACX Thr 

32 + 22 = 13 CCX Pro 

52 + 22 = 29 UCX Ser 

72 + 22 = 53 GCX Ala 

 

Group 2 are the Diophantine solutions of the equation 𝑧 = (2𝑖 − 1)2 + (2𝑗)2 

Nucleotide numbers Synonym codons (X=A, 

C, U or G) 

Name of the amino acid 

12 + 42 = 17 CUX Leu 

12 + 62 = 37 CGX Arg 

52 + 22 = 29 GUX Val 

72 + 62 = 61 GGX Gly 

 

Group 3: to determine the values in this group, Yan et. al use some heuristic arguments 

(borrowed from chemistry) that the reader is welcome to peruse (see references). 

Group 4 are the Diophantine solutions of the equation 𝑧 = 4(2𝑖 + 1) + 3 as well as 𝑧 =
8(2𝑖 + 1) + 3. 

 

Finally, the following code assignment results for all canonical amino acids: 
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Table 27. Prime number encoding of the canonical amino acids according to Yan et. al  

0 (stop) 1 (Try) 2 (Ile) 3 (Met) 5 (Thr) 

 7 (Lys) 11 (Asn) 13 (Pro) 17 (Leu) 

 19 (Gln) 29 (Ser) 31 (Asp) 37 (Arg) 

 41 (Val) 43 (Tyr) 47 (His) 53 (Ala) 

 59 (Glu) 61 (Gly) 25 (Phe) 45 (Cys) 

 

Note that Yan uses two codes that are not prime numbers: (25: phe and 45: cys). 

Using these codes, Yan et. al derive coding characteristics and strategies that would 

require a deeper understanding of genetics to explain and which, in any case, would take 

us too far afield. 

 

13.2 SPECTRAL CHARACTERISTICS OF ‘PRIME NUMBER SIGNALS ’  

Prime numbers show a certain similarity to the statistical data of physical experiments. 

This similarity probably comes from their 'unpredictability' (not, of course, in the strict 

mathematical sense). According to the theory of information, we can define a prime 

number signal as follows: 

𝑥𝑖 = 𝜋((𝑖 + 1)𝑀) − 𝜋(𝑖 ⋅ 𝑀), with a fixed interval length 𝑀. 

Physicists like to deal with the evaluation of signals. If we examine our 'prime' signal 

using physical methods, we are not doing 'real' physics, but something akin to a physical 

thought experiment. Let us imagine, in the search for extraterrestrial life forms by means 

of radio signals such a signal is received (we shall here not discuss the details of the 

modulation; we simply assume that it is a digital signal from which the numbers of the 

sequence 𝑥𝑖 were extracted). 

Here is an example with 𝑀 = 216, which gives the following ‘signal’: 

{4533,4454,4486,4430,4460,4446,4446,4442,4438,4421,4446,4401,4376,4417

,4358,4384,4435,4386,4355,4344,4360,4258,4337,4354,4394,4283,4339,4343

,4255,4354,4294,4307,4289,4237,4285,4327,4283,4266,4258,4285,4244,4256

,4301,4281,4228,4233,4232,4243,4261,4207,4240,4210,4198,4202,4197,4196

,4188,4221,4239,4217,4128,4220,4157,4226,4209,4128,4148,4195,4230} 

 

Mathematica: 

intervalLength=2^16; startValue=32; endValue=100; 

pSignal[j_,m_]:=PrimePi[(j+1)*m]-PrimePi[j*m] 

signal=Table[pSignal[k,intervalLength],{k,startValue,endValue}] 
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Let us conduct a 'prime number experiment' by generating a prime number signal and 

examining it using physical methods, such as spectral analysis. This signal has the 

following appearance: 

 

Figure 126. Prime number signal  𝑥𝑖  where interval length M = 2
16. red: 

𝑀

ln𝑀𝑖 
 

From the theory of numbers, we know that the asymptotic behaviour of 𝑥𝑖 is as follows: 

𝑥𝑖 =
𝑀

ln 𝑀𝑖 
. The red coloured curve shows the asymptotic behaviour. 

We now apply a discrete Fourier transform (DFT) to the signal 𝑥𝑖  and obtain in the 

frequency domain: 

𝑋𝑘 = ∑ 𝑥𝑗𝑒
−
2𝜋𝑖𝑗𝑘
𝑁

𝑁−1

𝑗=0

 (156) 

where 𝑁  is the length of our prime number signal (e.g. 216 ). Now, the physicist is 

interested in the spectral power density: 

𝑆𝑘 = |𝑋𝑘|
2  

If we look at this spectral power density on a logarithmic scale, then we experience a 

surprise, because it can be approximated over a wide range by a straight line. This means 

that the spectral power density of our prime signal behaves like 1/𝑘𝛼, with a constant 

exponent 𝛼: 

𝑆𝑘 ∼
1

𝑘𝛼
 where 𝛼 ≈ 1.55 (157) 
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The value 𝛼 ≈ 1.64 is given in the literature.67 Computations performed by the author 

lead to an approximate value of 1.55. 

This behaviour is well known to physicists for a group of physical systems, namely, those 

that are in a so-called ‘self-organized’ critical state. Many other physical systems also 

exhibit spectral behaviour according to the 
1

𝑘𝛼
 law: for example voltage noise in electronic 

components (flicker noise). 

There are also studies of the statistical behaviour of notes (within our 12-step tonal 

musical system) that show a statistical 1/f-behaviour for traditionally composed (non-

random music). Thus, we have established an (albeit remote) connection between primes 

and tonal music! 

Here is a plot of the spectral power density of a prime number signal: 

 

Figure 127. Spectral power density of a prime number signal (red : 1
𝑘
𝛼  where 𝛼 = 1.55) 

Mathematica program: please contact the author. 

 
67 Marek Wolf: PHYSICA A: Statistical mechanics and its applications ·January 1997, pp. 493-499 



   

240 
 

14 PRIME NUMBERS AND ONLINE BANKING 

14.1 RSA ENCRYPTION 

Prime numbers entered the field of cryptography, the 'science of deciphering', some time 

ago. In online banking, highly confidential data are constantly being sent back and forth. 

The number of transactions is so huge that a symmetrical encryption (where both partners 

have a secret key) would not be feasible, as the secret key would have to be sent on a 

secure transmission path (e.g. by post) prior to the actual transaction. This is basically 

impossible. There is, however, a procedure that avoids the complicated sending of keys 

by post: this is known as ‘asymmetrical RSA encryption’. 

We will briefly describe the RSA method first. 'RSA' stands for Rivest, Shamir and 

Adleman, the trio of computer scientists who first implemented the procedure in 1978. 

The original idea, however, was described by Diffie and Hellman in 1976. This 

encryption method is called ‘asynchronous’ because the sender and receiver of encrypted 

messages use different keys (which are public and secret). The sender uses a public key 

to encrypt and send, and the recipient uses a top secret private key to receive and decrypt 

the message. In order for the sender to send such encrypted messages to a receiver, the 

receiver must first generate a public (non-secret) key and then send it to the sender, who 

then uses it to send the message. This sending of the public key can, of course, take place 

in an unencrypted manner. 

Since texts are to be encrypted, we do not look at the individual characters, but their 

ASCII codes.68 These assign each character a value from 32 (space) to 90 (‘Z’), where 65 

= ‘A’, 66 = ‘B’ etc. Lower case letters are represented by highter numbers but this is 

irrelevant to an understanding of the procedure. 

The text to be encrypted is first translated into a long sequence of digits of these codes 

using the ASCII code. Thereafter, blocks of a fixed length (e.g. of length 64) are formed 

from this sequence of numbers. Each of these blocks is now interpreted as a (in this case, 

64-digit) number in a numeral system with base 256. The formation of blocks takes place 

only for reasons of manageability in order to avoid overlarge "numerical monsters". The 

choice of the base is not important and this can even be smaller if we use a smaller 

character set. 

It is important to understand that we have converted our text into a sequence of very, very 

large numbers (e.g. 50-digit numbers). It is also possible to use a single block for the 

whole message. In this case, the original message text to be encrypted consists only of a 

single (admittedly gigantic) number that we will call 𝑚  (= 'message'). The number 

contains all our text. So far it is very easy to restore our original text from 𝑚. 

Encryption is now coming into play. To recap: the sender has the public key that he has 

received from the recipient. Only the recipient has the secret private key (which has been 

created simultaneously with the public key at the recipient’s end). 

 
68 ASCII: ‘American Standard Code for Information Interchange’ 
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Now we come to the details. The private and public keys are generated as follows: we are 

looking for two different, very large prime numbers (typically hundreds of digits long). 

Primes of this size can be generated using simple mathematical methods, such as 

probabilistic prime number tests, the Fermat prime number test, the Miller-Selfridge-

Rabin test, the APRCL test or the Solovay-Strassen test (the algorithms are clearly set out 

on Wikipedia). 

Primes generated with a good probabilistic method are generally referred to as PRP 

numbers. They are, as far as it is humanly possible to judge, 'real' primes because the error 

probability of such large numbers is astronomically low (typically, for example, 10−100). 
Although there are also exact methods (with a polynomial run time), these are not suitable 

for the generation of very large primes because of their long running time. 

Note: the record for the largest currently known (as of May 2016) PRP number is a so-

called Wagstaff prime (see 4.13) and is: 

(213372531 + 1)/3   number of decimal digits: 4025533  

For comparison, the largest 'general' prime number found using a method valid for any 

primes (not primes of a particular form) is (as of 2011): 

((((((25210088873 + 80)3 + 12)3 + 450)3 + 894)3 + 3636)3 + 70756)3 + 97220 

This number is the 11th Mills prime number and it has 20562 decimal digits.69 

It can be seen clearly that for prime numbers of a particular form, primality tests are 

available for significantly larger numbers. The Lucas-Lehmer test for Mersenne prime 

numbers still provides the largest prime numbers (over 10 million digits). The largest 

general prime currently known, with 20562 decimal digits, is rather modest, since it has 

about 1000 times fewer decimal digits. Back to the RSA procedure: 

The methods for generating large primes suitable for the RSA method are not described 

here. Once again, we rely on the Mathematica software, which provides a set of 

functions that are used in cryptography: 

PowerMod[], PowerModList[], PolynomialMod[], RandomPrime[], 

Prime[], PrimeQ[],CoprimeQ[], FactorInteger[], 

GenerateAsmmetricKeyPair[], Encrypt[], Decrypt[], 

PrivateKey[], PublicKey[] 

  

 
69 Paulo Ribenboim: Die Welt der Primzahlen (Springer), p. 118 
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Mathematica generates 200-digit primes in a fraction of a second (using PRP 

algorithms): 

In[3]:= NextPrime[10^200] 

Out[3]= 

1000000000000000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000357 

The calculation of a 1000-digit PSP prime number takes about one second: 

In[5]:= RandomPrime[{10^1000,10^1000+1000}] 

Out[5]= 

1000000000000000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000000000000000

000000000000000000453 

We calculate two different (as large as possible) primes p and q and calculate the product 

n = 𝒏 = 𝒑𝒒. This product is called the 'RSA module'. Only the multiples of 𝑝 and 𝑞 are 

not coprime to 𝑛. 

The calculation of 𝑝 and 𝑞 can be done by the Mathematica function 

RandomPrime[]. 

The number of numbers being coprime to 𝑛 that lie between 1 and 𝑛 therefore amounts 

to 𝜑(𝑛) = (𝑝 − 1)(𝑞 − 1). 

Next, we need the so-called encryption exponent 𝑘 (which is public). The encryption 

exponent 𝑘 must be chosen to be coprime to both 𝑝 − 1 and 𝑞 − 1, which is equivalent 

to saying that 𝑘 is coprime to 𝜑(𝑛). In addition, the following must hold for 𝑘: 3 < 𝑘 <
𝜑(𝑛); 𝑘 can be found with the Mathematica function CoprimeQ[]. 

Usually, for the sake of efficiency, the 5th Fermat prime number 65537 = 22
5−1
+ 1 is 

chosen (this is a relatively small exponent, the decryption exponent defined below) is 

usually much larger). 

The choice of a prime number for 𝑘 has the advantage that 𝑘 is automatically always 

coprime to 𝜑(𝑛) (even with another set of (𝑝, 𝑞)), which is a prerequisite. However, 𝑘 

should not be chosen too small (the recommendation is about ¼ of the bit length of the 
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RSA module), otherwise the system is vulnerable to attack and decryption without the 

knowledge of 𝑝 and 𝑞. 

The module 𝒏 and the encryption exponent 𝒌 form the public key. 

Next, we need the decryption exponent 𝑙. The decryption exponent 𝑙 is the 

multiplicative inverse element with respect to 𝜑(𝑛). Thus, 𝑘 ⋅ 𝑙 ≡ 1 (mod 𝜑(𝑛)). To 

calculate 𝑙, many methods exist, for example, a slightly modified Euclidean algorithm, 

or Mathematica: 

l=PowerMod[k,-1,n] 

The primes p and q as well as the decryption exponent l form the private, secret 

key. 

In fact, only the (secret) decryption exponent 𝑙 and the (public) module 𝑛 are needed for 

decrypting, so that one also speaks of the key pairs (𝑘, 𝑛) (public) and (𝑙, 𝑛) (private). 

Once the encryption algorithm has been established, the values 𝜑(𝑛) and the primes 𝑝 

and 𝑞 are no longer required for decryption and can be erased again (for security). 

Now we come to the actual processes of encryption and decryption of messages: 

Our message is converted to a number 𝑚  as described above (ASCII codes). This 

number 𝒎 should be less than our modulus 𝒏: 𝒎 < 𝒏. 

If this condition does not hold, then the message must be split into several blocks 𝑚𝑖, so 

that 𝑚𝑖 < 𝑛 holds again. 

 

Encryption is done simply by computing 𝒓 = 𝒎𝒌 (𝐦𝐨𝐝 𝒏) using the encryption 

exponent 𝒌. Most implementations use the value 𝟔𝟓𝟓𝟑𝟕 (the 5th Fermat number) 

for 𝒌. 

Insufficient values for 𝑘 reduce the security of the process and make the encryption 

vulnerable. This encrypted value 𝑟 is sent to the recipient. 

Decrypting is simply done by computing 𝒎 = 𝒓𝒍 (𝐦𝐨𝐝 𝒏) using the (inverse) 

decryption exponent 𝒍. 

In the original article of Rivest, Shamir, and Adleman70 , the additional condition is 

specified that 𝑚  and 𝑛  must be coprime to each other (in which case the following 

relation holds;  mφ(n) ≡ 1 (mod n)) , but the RSA method also appears to work if 

gcd(𝑚, 𝑛) ≠ 1  (i.e. if 𝑚  and the RSA module 𝑛  have a common divisor). The 

assumption that 𝑚 and 𝑛 are mutually coprime just simplifies the proof of the validity of 

the RSA method. 

The proof that this algorithm works is simple: 

𝒓𝒍 = (𝒎𝒌)
𝒍
= 𝒎𝒌𝒍, 𝒌 ⋅ 𝒍 ≡ 𝟏 (𝐦𝐨𝐝 𝝋(𝒏)) 

 
70 A Method for Obtaining Digital Signatures and Public-Key Cryptosystems, p. 7 (1978) 
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From this, it follows that there is an integer 𝑠 such that 

𝒌 ⋅ 𝒍 = 𝒔 ⋅ 𝝋(𝒏) + 𝟏 

 

A few transformations are sufficient to show that encryption of 𝑚 and subsequent 

decryption again yields 𝑚: 

rl(mod n) = mkl (mod n) 

= ms⋅φ(n)+1 (mod n) = m(mφ(n))
s
(mod n) 

= m (mod n), da mφ(n) ≡ 1 (mod n) 
= 𝑚 

Commonly used methods employ in addition various padding techniques described in the 

relevant specifications. Padding means that additional information (possibly also random 

elements or information about the length of the text) is attached to the text to be encrypted 

in order to increase the security of the method. Common padding methods are e.g. 

‘PKCS#1’', ‘OAEP’ (Optimal Asymmetric Encryption Padding), or ‘SSLV23’. PKCS1 

and SSLV23 add 11 additional bytes to the data block to be encrypted, the ‘OAEP’ 

procedures even adds 41 bytes. Further details will not be given here. If the reader wishes 

to go into the matter in greater detail, sources from the Internet are recommended.71 The 

software Mathematica supports the PKCS1 padding process for encryption and 

decryption. Note that for the modified message 𝑚′ it is imperative that 𝒎′ < 𝒏. 

 

 
71 https://de.wikipedia.org/wiki/RSA-Kryptosystem, 
http://people.csail.mit.edu/rivest/Rsapaper.pdf,  
http://www.di-mgt.com.au/rsa_theory.html 

https://de.wikipedia.org/wiki/RSA-Kryptosystem
http://people.csail.mit.edu/rivest/Rsapaper.pdf
http://www.di-mgt.com.au/rsa_theory.html
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14.2 THE SECURITY OF THE RSA METHOD 

In the practical implementations of the RSA encryption method, some additional features 

are built in that make the transfers even more secure. However, the security of the method 

is based on the fact that the public key (RSA module) with the number 𝑛 representing the 

product of two large prime numbers cannot be decomposed into the two prime factors by 

the currently known factorization algorithms. As long as this is impossible, 𝜑(𝑛) and the 

decryption exponent 𝑙 cannot be calculated either. 

This is where explosives once again are hidden: no one (not even specialists in this field) 

can say whether a fast factorization algorithm will be found in the future. A factorization 

algorithm that worked in polynomial time would bring about a total collapse in security. 

At present (as of May 2016), it is not known whether or not a sufficiently fast algorithm 

might exist. This is remarkable because, in other fields, mathematicians have succeeded 

in establishing whether or not fast algorithms are possible for solving entire classes of 

problems. 

In the case of the factorization problem, no such proof has been found, so it is perfectly 

conceivable that such an algorithm is out there somewhere waiting to be discovered (see 

10.3). Our entire online banking system would (literally) collapse if hackers gained access 

to such an algorithm! 

Note: a fast method for calculating 𝜑(𝑛) or 𝜎(𝑛) would have the same consequences 

(20.9.3.2). However, the calculation methods known to date (as of May 2016) are of the 

same complexity as the factorization problem. 

Another danger comes from the ever-increasing speed of computer hardware. With the 

computer hardware we have now, we can rule out the possibility of keys of the length in 

current use being cracked, as the computing time required would equate to the entire age 

of the universe. If, however, some day the highly touted quantum computers were to 

become a reality (to which end an intensive research effort is underway), these would 

pose a threat to the security of RSA encryption. The author is not aware whether the 

possibility of increasing the depth of encryption in the RSA algorithm to reduce the risk 

of ‘hacking’ by quantum computers is also being investigated … 
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14.3 COMPUTING EXAMPLES OF RSA ENCRYPTION AND DECRYPTION 

Here are a few simple examples. The colours indicate the different areas (‘public’ in blue, 

‘secret’ at the receiver side in red, ‘secret’ at the receiver and transmitter side in green): 

Example 1: 

The sender wants to send a secret message to the recipient that only consists of the 

number 1115: 

𝐦𝐒𝐨𝐮𝐫𝐜𝐞 = 𝟏𝟏𝟏𝟓 

The receiver selects two suitable prime numbers: 

𝒑 = 𝟒𝟕 and 𝒒 = 𝟓𝟗 

This results in the following module, which is communicated unencrypted to the sender:  

𝐩𝐮𝐛𝐌𝐨𝐝𝐮𝐥𝐮𝐬 = 𝐩𝐪 = 𝟐𝟕𝟕𝟑 

The number of numbers being coprime to pubModulus is: 

privModulus = 𝜑(pubModulus) = (𝑝 − 1) ∗ (𝑞 − 1) = 2668 

The receiver chooses a suitable encryption exponent and sends it (unencrypted) to the 

sender: 

𝐩𝐮𝐛𝐄𝐱𝐩𝐨𝐧𝐞𝐧𝐭 = 𝟏𝟕 

The receiver also calculates the multiplicative inverse decryption exponent using 𝜑: 

𝐩𝐫𝐢𝐯𝐄𝐱𝐩𝐨𝐧𝐞𝐧𝐭 = PowerMod[pubExponent, −1, privModulus] = 𝟏𝟓𝟕 

The sender encrypts mSource to mCrypt and sends mCrypt to the recipient: 

𝐦𝐂𝐫𝐲𝐩𝐭 = 𝐦𝐒𝐨𝐮𝐫𝐜𝐞𝐩𝐮𝐛𝐄𝐱𝐩𝐨𝐧𝐞𝐧t (mod 𝐩𝐮𝐛𝐌𝐨𝐝𝐮𝐥𝐮𝐬) = 𝟏𝟑𝟕𝟗 

The recipient finally decrypts mCrypt to mSource: 

𝐦𝐒𝐨𝐮𝐫𝐜𝐞 = 𝐦𝐂𝐫𝐲𝐩𝐭𝐩𝐫𝐢𝐯𝐄𝐱𝐩𝐨𝐧𝐞𝐧𝐭(mod 𝐩𝐮𝐛𝐌𝐨𝐝𝐮𝐥𝐮𝐬) = 𝟏𝟏𝟏𝟓 

It is easy to crack the decrypting exponent, ‘privExponent’ by calculating the prime factor 

decomposition of the module with the factors 𝑝 and 𝑞, and then using privModulus to 

reconstitute privExponent. 

Mathematica: 

(*very simple example of RSA encryption*)  

(*############### implement coding mechanism ######################*) 

(*choose two different prime numbers:*) 

p=47; q=59; 

If[!PrimeQ[p]||!PrimeQ[q],Print["Error: p or q not Prime!"];Exit[];] 

(*Compute public module and phi()*) 

pubModulus=p*q; privModulus=(p-1)*(q-1); (*=EulerPhi[pubModulus]*) 

(*pubExponent can be chosen freely, must be between 3 and privModulus 

and coprime to privModulus*) 

pubExponent=17;  

If[pubExponent >= privModulus||pubExponent<3,Print["Error: pubExponent 

> privModulus!"];Exit[];] 

If[!CoprimeQ[pubExponent,privModulus],Print["Error: pubExponent not 

coprime to privModulus!"];Exit[];] 

(*compute private exponent: inverse of public exponent*) 

privExponent=PowerMod[pubExponent,-1,privModulus];  

(*############## Encode and Decode messages:######################*) 

(*this is the message to be encoded:*) 

mSource=1115 

If[mSource >=pubModulus,Print["Error: message bigger than module (use 

bigger primes)!"];Exit[];] 
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(*encode: *) 

mCrypt=PowerMod[mSource,pubExponent,pubModulus] 

(*decode:*) 

mSource1=PowerMod[mCrypt,privExponent,pubModulus] 

If[mSource!=mSource1,Print["Error: rSA Coding/Encoding failed"]]; 

(*########## Hacking the module:##############################*) 

Print["Try to hack RSA module…"]; 

pqHacked=FactorInteger[pubModulus]; 

pH=First[pqHacked[[1]]];qH=First[pqHacked[[2]]]; 

privExponentH=PowerMod[pubExponent,-1,(pH-1)*(qH-1)] 

If[privExponentH==privExponent,Print["Hack of RSA module 

succeeded!"]]; 

 

 

Example 2 (similar to example 1) 

The sender wants to send a secret message to the recipient that only consists of the 

number 1115. In this example, however, we use the Mathematica functions 

PublicKey[],PrivateKey[], Encrypt[], as well as Decrypt[]. No 

padding algorithm has been used (specified by: “None”). 

The program used can be found in the Appendix (20.11.11). 

The private and public keys generated by Mathematica are as follows: 

 
 

The original number reads: 1115 

The prime numbers and module used to generate the keys are: 

𝒑 = 𝟒𝟕;  𝒒 = 𝟓𝟗; public Modulus=2773 
The encrypted number reads: 1379 
 

Example 3 

The sender wants to send a secret message to the recipient that only consists of the text 

“OK”. In this example we use Mathematica’s built-in functions 

GenerateAsymmetricKeyPair[], Encrypt[], as well as Decrypt[] 

together with the “PKCS1” padding algorithm using a key length of 97 bits. 

The program used can be found in the Appendix (20.11.11). 

 

The private and public keys generated by Mathematica are as follows: 
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Here in detail are the exact values (output of the program) 

Original string to be encoded: “OK” 

Original string as number: 20299 

Original text as a byte array including 10 bytes padded by PKCS1 algorithm:  

{2, 32, 69, 224, 233, 133, 242, 219, 235, 0, 79, 75} “\.02 Eàé…òÛë\.00OK” 

Public Modulus: 𝟏𝟐𝟐𝟎𝟐𝟒𝟑𝟑𝟕𝟎𝟒𝟑𝟖𝟗𝟐𝟖𝟓𝟐𝟐𝟕𝟕𝟓𝟗𝟔𝟗𝟒𝟗𝟓𝟒1 

Private Exponent: 𝟕𝟔𝟐𝟒𝟓𝟒𝟐𝟕𝟖𝟎𝟑𝟑𝟑𝟖𝟐𝟖𝟓𝟎𝟐𝟔𝟐𝟗𝟗𝟖𝟓𝟒𝟗𝟑 

Private Modulus (phi[publicModulus]): 122024337043892092448561992492 

Encrypt. object (data) {0, 42, 120, 153, 109, 62, 0, 217, 150, 54, 211, 165, 4} 

Encrypt. Number:13144166048085041547004060932 

Decryption-result (using encrypted Byte data as parameter restores original Bytes:  

{79, 75} 

Decryption result (using encrypted Object as parameter restores original String):  

“OK” (20299) 

 

Example 4 

A curious hacker is in possession of an encrypted message as well as of the associated 

public key and would like to decipher the message even though he does not have the 

private key (with the private exponent). In this example, we use the functions 

PrivateKey[],as well as Decrypt[] implemented in Mathematica together with 

the "PKCS1" padding method at a key length of 192 bits. 

The program used can be found in the Appendix (20.11.11). 

Let's suppose someone has generated the following public RSA key (for example, by 

using the Mathematica function GenerateAsymmetricKeyPair[]). Let us 

suppose further that he has released the module, the public encryption exponent, and an 

encrypted message: 
𝒑𝒖𝒃𝑬𝒙𝒑𝒐𝒏𝒆𝒏𝒕 = 𝟔𝟓𝟓𝟑𝟕; 
𝒑𝒖𝒃𝑴𝒐𝒅𝒖𝒍𝒖𝒔 = 𝟓𝟑𝟔𝟗𝟔𝟗𝟓𝟗𝟔𝟓𝟏𝟑𝟗𝟎𝟖𝟖𝟏𝟎𝟏𝟎𝟖𝟏𝟒𝟖𝟓𝟐𝟑𝟓𝟓𝟔𝟕𝟒𝟕𝟖𝟏𝟒𝟐𝟒𝟑𝟖𝟕𝟐𝟖𝟐𝟖𝟗𝟑𝟏𝟓𝟕𝟐𝟔𝟗𝟎𝟎𝟖𝟕𝟏; 
𝒎𝑪𝒓𝒚𝒑𝒕 = 𝟏𝟗𝟏𝟕𝟗𝟕𝟏𝟒𝟖𝟏𝟐𝟓𝟔𝟖𝟑𝟒𝟒𝟕𝟖𝟖𝟖𝟑𝟗𝟔𝟏𝟎𝟒𝟏𝟎𝟖𝟔𝟓𝟒𝟑𝟗𝟑𝟑𝟑𝟒𝟑𝟖𝟖𝟐𝟗𝟏𝟒𝟎𝟕𝟒𝟗𝟑𝟒𝟔𝟑𝟔𝟏𝟑𝟑; 
 

Our hacker needs only a few lines of Mathematica program code to hack the key: 

He factorizes the module into the prime numbers pH and qH: 
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FactorInteger[5369695965139088101081485235567478142438728289315726900871] 

{{68357071940820194611682396513,1},{78553627484042565312533006567,1}} 

 

He calculates phi[] (aka ‘private module’:) 

privModulus = (pH − 1) ∗ (qH − 1): 
𝟓𝟑𝟔𝟗𝟔𝟗𝟓𝟗𝟔𝟓𝟏𝟑𝟗𝟎𝟖𝟖𝟏𝟎𝟏𝟎𝟖𝟏𝟒𝟖𝟓𝟐𝟑𝟓𝟒𝟐𝟎𝟓𝟔𝟕𝟒𝟒𝟑𝟎𝟏𝟑𝟖𝟔𝟓𝟓𝟐𝟗𝟑𝟗𝟏𝟓𝟏𝟏𝟒𝟗𝟕𝟕𝟗𝟐 

He calculates the private exponent: 

privExponent = PowerMod[pubExponent,−1, privModulus]; 
𝟒𝟖𝟒𝟒𝟗𝟗𝟏𝟖𝟓𝟗𝟔𝟔𝟎𝟒𝟗𝟐𝟒𝟗𝟓𝟓𝟓𝟓𝟗𝟔𝟕𝟖𝟕𝟏𝟗𝟖𝟐𝟔𝟏𝟏𝟓𝟕𝟐𝟐𝟎𝟕𝟏𝟑𝟑𝟓𝟑𝟐𝟗𝟓𝟖𝟔𝟎𝟕𝟑𝟒𝟐𝟒𝟎𝟏 

and finally generates a new private key, with which he can decrypt the message: 
privKey=PrivateKey[<|"Cipher"->"RSA","Padding"-

>"PKCS1","PublicExponent"->pubExponent,"PrivateExponent"-

>privExponent,"PublicModulus"->pubModulus|>] 

 

Finally, he is able to decrypt the message: 
bCryptArray=ByteArray[IntegerDigits[mCrypt,256]]; 

decryptedByteArray=Normal[Decrypt[privKey,bCryptArray]]; 

decryptedString=FromCharacterCode[decryptedByteArray] 

 

et voilà! Here is the deciphered message: 

“Elvis lives!” 

 

The Mathematica program used can be found in the Appendix (20.11.11). 

Note: the computing time is about 30 seconds on a 2.6 GHz quad core computer. 

 

Example 5 

A further example of how a private key with a key length of 2048 bits can be hacked and 

such an encrypted message (about 256 bytes) can be read without knowing the private 

key can also be found in the Appendix (20.11.11). 
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15 PRIME NUMBERS IN MUSIC 

15.1 EULER’S THEORY OF CONSONANCE AND THE GRADUS SUAVITATIS  

As every musician knows, musical intervals and chords can sound either consonant or 

dissonant, with a flowing boundary between 'consonant' and 'dissonant' that probably also 

depends on the taste of the historical epoch of the music. Nevertheless, the mathematician 

Leonhard Euler (1707-1783) – and the attentive reader will have noticed that this is not 

the first time we have encountered this gentleman … – was convinced it was possible to 

formulate a mathematical definition of harmony, or more precisely, of the 'degree' of 

harmony (aka ‘euphony’).  

Euler found a formula that indicates the degree of euphony as a natural number, and called 

the number derived from the formula the ‘Gradus Suavitatis’.72 In the calculation of the 

Gradus Suavitatis, prime numbers (what else?) play a special role. Euler uses the concept 

of consonance for arbitrary (and not only euphonious) ‘composite sounds’. 

By ‘composite sounds’, we mean simultaneously sounding notes, whereby the notes 

should be tuned in pure temperament and thus have mutually rational (fractions of natural 

numbers) ratios. Although the Gradus Suavitatis can be computed for arbitrary numbers, 

it was in former times only applied musically to intervals the ratios of which can be 

described with the primes 2, 3, and 5. In his later writings, however, Euler pleads for the 

introduction of the prime number 7 into 'musical arithmetic'. 

 

 
72 Euler, Leonhard: 
Tentamen Novae Theoriae Mvsicae Ex Certissimis Harmoniae Principiis Dilvcide Expositae 
Petropolis 1739 
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Figure 128. Opening of the 4th chapter of Leonhard Euler’s book Tentamen novae theoriae musicae  

 

In contrast to Pythagorean tuning, in which all the scales occurring are constructed by 

using fifths (which are projected into the octave space, if necessary), 'pure' tuning only 

uses the number ratios 5/4 and 6/5 for the major and minor thirds. If we wish to assign 

a ‘pure’ numeral ratio to all the twelve semitones of the octave, we discover a certain 

ambiguity exists for the intermediate notes, because only the root, fourth, fifth, major / 

minor third, and the major / minor sixth are precisely defined. If we take the root note C, 

the seven precisely defined notes are: 

C, Eb, E, F, G, Ab, A (having the ratios 1,
6

5
,
5

4
,
4

3
,
3

2
,
8

5
,
5

3
).  

The remaining notes can be chosen in different ways, depending on the note from which 

they are constructed. Here is an example: the note Bb can be constructed by starting from 

F: the two consecutive fourths starting from the C then give the value 
4

3
⋅
4

3
=
16

9
. Bb can, 

however, also be constructed starting from G. Fifth and minor third starting from C then 

result in 
3

2
⋅
6

5
=
9

5
. 

 

The most commonly used pure scale that is closest to the tempered tone scale, is: 

 

Chromat. scale C Db D Eb E F F# G Ab A Bb B c 

Freq. ratio  1/1 16/15 9/8 6/5 5/4 4/3 45/32 3/2 8/5 5/3 9/5 (16/9) 15/8 2/1 
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From this ambiguity, we recognize that the application of the Gradus Suavitatis to the 

‘equal temperament’ tuning system we use these days (in which the frequency ratios of 

the chromatic scale are simply the values of a geometric sequence with the factor 𝑞 =

√2
12

) is problematic. 

 

If we define an interval in pure tuning as the frequency ratio 
𝑝

𝑞
, 𝑝, 𝑞 ∈ ℕ (see table), and 

build the so-called Euler exponent 𝐸 = lcm(p, q) , then the Gradus Suavitatis 𝑮  is 

defined as follows: 

 

𝐺(𝐸) = 1 + ∑ 𝑒𝑖

𝝎(𝑬)

𝑖=1

(𝑝𝒏𝒊 − 1),where 𝐸 = lcm(𝑝, 𝑞) = ∏  𝑝𝑛𝑖
𝑒𝑖

𝜔(𝐸)

𝑖=1

 (158) 

 
 

Here lcm(𝑝, 𝑞) is the least common multiple of 𝑝 and 𝑞; 𝑝𝑛𝑖
𝑒𝑖 are the occurring prime 

factors with their multiplicities (as exponents), 𝑛𝑖 the indices of the occurring primes; 

𝜔(𝐸) denotes the number of different primes. Sometimes the Gradus Suavitatis is also 

referred to in the literature with the symbol Γ(𝑝, 𝑞). We prefer to use the symbol 𝐺 to 

avoid confusion with the gamma function Γ(x). The Gradus Suavitatis can also easily be 

applied to chords consisting of three notes (‘triads’) or more. In this case, 𝐸 is simply 

calculated as 𝐸 = lcm(𝑞1, 𝑞2, 𝑞3, … )  where the integers 𝑞1, 𝑞2, 𝑞3, … , represent the 

frequency ratios with respect to the lowest occurring note. 

 

The Gradus Suavitatis can thus also be calculated for combinations of arbitrarily many 

notes. For a single argument 𝑛, 𝐸 = 𝑛. In this case, the Gradus Suavitatis is merely an 

arithmetical function depending solely upon the positive integer variable 𝑛. Furthermore, 

we define: 𝐺(1) = 1. Note: we also assume that the ratios (𝑞1, 𝑞2, 𝑞3, … ) are minimal, 

i.e. ’simplified’ as far as possible, since otherwise the Gradus Suavitatis would yield 

higher values, thus the notation 𝐺 (
3

2
) is somewhat imprecise. 

Since in this case we want to calculate the Gradus Suavitatis for a two-note chord (or 

‘harmonic interval’) with the frequency ratios 1 (root) and 
3

2
 (fifth), it would be more 

precise mathematically to write:  

𝐺 (1,
3

2
)= 𝐺(2,3).  

In order to avoid confusion, it is best to calculate first the Euler exponent 𝐸 for the chord 

or interval to be examined, and then the Gradus Suavitatis for the integer argument 𝐸. 

 

Here are a few examples: 

𝐺(2) = 1 + 1 ⋅ (2 − 1) = 2, 𝐺(3) = 1 + 1 ⋅ (3 − 1) = 3, 𝐺(4) = 1 + 2 ⋅ (2 − 1) = 3 

𝐺 (
3

2
) = 𝐺(3,2) = 𝐺(6) = 1 + 1 ⋅ (2 − 1) + 1 ⋅ (3 − 1) = 4 (fifth) 

𝐺 (
2

3
) = 𝐺(2,3) = 𝐺(6) = 4 (fourth) 

𝐺 (
12

5
) = 𝐺(12,5) = 𝐺(60) = 1 + 2 ⋅ 1 + 1 ⋅ 2 + 1 ⋅ 4 = 9 (minor tenth) 

Major triad: 𝑞1 = 1, 𝑞2 =
5

4
, 𝑞3 =

3

2
, ⇒ 𝐸 = lcm(4,5,6) = 60, 𝐺(60) = 9  

1st inversion: 𝑞1 = 1, 𝑞2 =
6

5
, 𝑞3 =

8

5
, ⇒ 𝐸 = lcm(5,6,8) = 120, 𝐺(120) = 10 
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2nd inversion: 𝑞1 = 1, 𝑞2 =
4

3
, 𝑞3 =

5

3
, ⇒ 𝐸 = lcm(3,4,5) = 60, 𝐺(60) = 9 

Minor triad: 𝑞1 = 1, 𝑞2 =
6

5
, 𝑞3 =

3

2
, ⇒ 𝐸 = lcm(10,12,15) = 60, 𝐺(60) = 9 

1st inversion: 𝑞1 = 1, 𝑞2 =
5

4
, 𝑞3 =

5

3
, ⇒ 𝐸 = lcm(12,15,20 ) = 60, 𝐺(60) = 9 

2nd inversion: 𝑞1 = 1, 𝑞2 =
4

3
, 𝑞3 =

8

5
, ⇒ 𝐸 = lcm(15,20,24 ) = 120, 𝐺(120) = 10 

 

 

The Gradus Suavitatis is greater, the greater the dissonance of the intervals 

considered. Smaller Gradus-Suavitatis values mean a higher degree of consonance 

(greater euphony)… 

 

However, a clear unique assignment from the Gradus Suavitatis to the categories 

'consonant' and 'dissonant' is problematic, according to the original text: 

 

 
Figure 129. Chapter 4, §14 from Leonhard Euler’s book Tentamen Novae Theoriae musicae  

Translation into German (Mitzler): 

“…Die Dissonanzen gehören zu höheren Graden, und für Konsonanzen werden die-

jenigen gehalten, die zu tieferen Graden gehören. So wird der Ganzton, der aus Tönen 

im Verhältnis 8 : 9 besteht und zum achten Grad gehört, zu den Dissonanzen gezählt, 

der Ditonus aber (die große Terz), der im Verhältnis 4 : 5 enthalten ist, welcher zum 

siebten Grad gehört, wird zu den Konsonanzen gezählt. Und trotzdem kann aus diesem 

achten Grad nicht der Anfang der Dissonanzen festgelegt werden; denn in demselben 

sind die Verhältnisse 5 : 6 und 5 : 8 enthalten, welche nicht zu den Dissonanzen 

gerechnet werden.“ 

 

Here are a few Mathematica programs that show calculations of the Gradus Suavitatis: 

 
(*Computing Euler’s Gradus Suavitatis *) 

(*works for any number of arguments n >1, arguments can be rational:*) 

eulerExp[q__]:=Module[{exp,qList}, 

qList=List[q]; 
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If[Length[qList]==1&&IntegerQ[qList[[1]]], 

exp=qList[[1]], exp=Apply[LCM,qList]/Apply[GCD,qList]]; 

Return[exp]; 

]; 

(*works for 1 argument. argument can be rational:*) 

eulerExp[r_]:=eulerExp[Numerator[r],Denominator[r]]; 

(*works for 1 integer argument, number-theoretic version:*) 

gas[n_]:=Module[{s=FactorInteger[n]},1+Sum[s[[k,2]]*(s[[k,1]]-

1),{k,Length[s]}]]; 

(*works for 1 or 2 arguments can be rational:*) 

gs2[p_,q_]:=gs[LCM[p,q]/GCD[p,q]]; 

gs2[x_]:=gs2[Numerator[x],Denominator[x]]; 

(*works for any number of arguments n > 1, arguments can be 

rational:*) 

gsn[q__]:=Module[{ exp, retValue}, 

exp=eulerExp[q]; 

s=FactorInteger[exp]; 

retValue=1+Sum[s[[k,2]]*(s[[k,1]]-1),{k,Length[s]}]; 

Return[retValue]; 

]; 

 

 

15.1.1 MATHEMATICAL PROPERTIES OF THE GRADUS SUAVITATIS 

1) 𝐺(1) = 1  
2) 𝐺(𝑝) = 𝑝, if 𝑝 ∈ ℙ 
3) 𝐺(𝑝𝑞) = 𝐺(𝑝) + 𝐺(𝑞) − 1 (‘quasi-logarithmic’) 
4) 𝐺(2𝑛) = 𝑛 + 1 
5) 𝐺(𝑝𝑛) = (𝑝 − 1)𝑛 + 1 

6) 𝐺 (
𝑝

𝑞
) = 𝐺 (

𝑞

𝑝
) or 𝐺(𝑝, 𝑞) = 𝐺(𝑞, 𝑝) 

7) 𝐺(𝑞1, 𝑞2, 𝑞3, … 𝑞𝑛) = 𝐺(𝑞𝑖1 , 𝑞𝑖2 , 𝑞𝑖3 , … 𝑞𝑖𝑛),where i1, 𝑖2, 𝑖3, … 𝑖𝑛  

represent all possible permutations of 1,2,3, … 𝑛  

8) 𝐺 (
1

𝑞1
,
1

𝑞2
,
1

𝑞3
, …

1

𝑞𝑛 
) = 𝐺(𝑞1, 𝑞2, 𝑞3, … 𝑞𝑛) 

 

For major and minor triads (let 𝑋 be the three frequency ratios of a major triad, 𝑋𝑚 the 

three ratios of a minor triad, the indices 1 and 2 each represent the first and second 

inversions, respectively): 

9) 𝐺(𝑋) = 𝐺(𝑋2) = 𝐺(𝑋𝑚) = 𝐺(𝑋𝑚1) 
10)  𝐺(𝑋1) = 𝐺(𝑋𝑚2) 

According to Euler, a sequence of frequency ratios (which build up a chord) can be 

continued in such a way that the Gradus Suavitatis value remains the same. Euler calls 

this the ‘complete consonance’. For the major triad the complete consonance gives the 

following frequency ratios: 

1: 2: 3: 𝟒: 𝟓: 𝟔: 𝟏𝟎: 𝟏𝟐: 𝟏𝟓: 20: 30: 60… 
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Note that in this complete consonance there are major triads (𝟒: 𝟓: 𝟔 , for example, 

corresponds to C-E-G) and minor triads (𝟏𝟎: 𝟏𝟐: 𝟏𝟓 corresponds to E-G-H). Note also 

that up to the sixth term, this sequence is identical to the overtone sequence (harmonics). 

This corresponds quite well to the modern convention of jazz harmony whereby the major 

triad is routinely accompanied by a major seventh. 

Here is a plot of the Gradus Suavitatis that bears a striking similarity to Figure 43 (integer 

logarithm): 

 

Figure 130. Leonhard Euler’s Gradus Suavitatis in the range 1 to 500 

15.1.2 ‘ADJUSTED LISTENING’ TO COMPLEX OR IRRATIONAL INTERVALS 

The method of the Gradus Suavitatis is, of course, only a rough approximation and 

reflects the actual sense of hearing (consonant or dissonant) only in a limited way, and 

only for proportions in which small numbers (composed of the primes 2,3 and 5) occur. 

This is evident from the fact alone that inaudibly ‘small’ detune values in the calculation 

of the GS (the calculation requires, of course, an approximation by rational numbers) 

would lead to huge Gradus Suavitatis values, although they would still be perceived as 

‘pleasant’. As an example, we take an A major triad with 440 Hz for the note A: 

The frequency ratios of the A major triad (A-C#-E) are 440:550:660. The Gradus 

Suavitatis for this major triad is (as we have seen): 

𝐺(440,550,660) = 𝐺(4,5,6) = 9. Let us now consider the note E, which is inaudibly 

detuned by 1 Hz, at 661 Hz instead of 660 Hz. There is no change perceptible by the 

human ear, but the Gradus Suavitatis of the slightly detuned triad is 𝐺(440.550.661)  =
 682! 
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Euler was therefore of the opinion that the human soul has the capacity to ‘justify’ such 

small discrepancies: in other words, a tempered fifth with an irrational frequency ratio of 

( √2)
12 7

 will simply be adjusted by our souls to approximately the same value of 
3

2
. 

It’s fortunate that ( √2)
12 7

= 1.49831 is so close to the value of the pure fifth (
3

2
=

1.5)! 

If this were not the case, we would not be able to make music (at least Western music) 

using the tempered 12-note scale! Which in turn raises the question whether it really is 

purely due to the coincidence that the tempered fifth is so close to the pure fifth. Some 

people may not be entirely comfortable with the idea that we have (random) chance to 

thank for anything as sublime as the works of J. S. Bach. 

15.2 PRIME NUMBERS AS RHYTHMIC PATTERNS  

If we translate the differences between the prime numbers into temporal differences, we 

get a rhythmic pattern. 

We use the Sieve of Eratosthenes, 'sieve' the first 50 prime numbers (2 to 229) and 

interpret the X-axis as the time axis. The Y-axis is interpreted as the pitch. In order to 

reach an ‘audible’ range, we multiply the relevant prime numbers by the frequency factor 

with the value 110 Hz so that the lowest notes (which create a 2-beat rhythm) are located 

at 220 Hz. 

This corresponds to A3 (employing the international convention) or small ‘a’ (employing 

the convention used in German-speaking countries). The highest notes in this 

representation then lie at approximately 20000 Hz. Thus the following diagram, in which 

each 'prime number rhythm' is marked by a different colour, results: 
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Figure 131. Prime number rhythms, from the first 50 prime numbers with A3 as lowest note  

 Mathematica: 

(*Generate a list with 50 different sequences of 

(frequency,Primenumber)-Pairs, using A2=110Hz as the base-frequency*) 

tab=Table[{j,Table[{i,110*Prime[j]},{i,Prime[j],Prime[50],Prime[j]}]},

{j,1,50}]; 

ListLogPlot[Table[tab[[k]][[2]],{k,1,50}],PlotLabel->"Prime-Rhythms 

(First 50 prime numbers)\nLowest note: A3 (220 Hz)", ImageSize->Large]  

 

With Mathematica, it is very easy to translate these tables into music. We use the table of 

Figure 131 and generate a ‘prime number’ song 46 seconds in duration: 

Mathematica: 

(*needs the prime sound-library, to be found in the Appendix *) 

tab=Table[{j,Table[{i,110*Prime[j]},{i,Prime[j],Prime[50],Prime[j]}]},

{j,1,50}]; 

sortedTab=Sort[Flatten[Drop[tab,None,1],2]]; 

noteList=createNoteListFromSortedTable[sortedTab]; 

song1=Sound[{"Percussion",Table[SoundNote[noteList[[k]][[2]]-

10,0.2],{k,1,Length[noteList]}]},{0,46}]; 

song2=Sound[{"Marimba",Table[SoundNote[noteList[[k]][[2]],0.2],{k,1,Le

ngth[noteList]}]},{0,46}]; 

primenumberSong=Sound[{song1,song2}]; 

Export["C:/primes/Sounds/primenumberSong46Sec.mid",primeNumberSong]; 
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Figure 132. Mathematica sound object (prime number song)  

The idea of interpreting prime numbers as rhythmic patterns was originally that of Peter 

Neubäcker, head of the company Celemony and inventor of the music software 

‘Melodyne’.73 

With Melodyne it is also very easy to create 'songs' with primes. Melodyne has the 

advantage over Mathematica that the result can be exported as real sound (and not merely 

in MIDI format). In addition, the pitch of the generated note events can be set much more 

precisely. 

Here is a screen shot of Melodyne with a prime number arrangement: 

 

Figure 133. Melodyne creates prime number rhythms using the Sieve of Eratosthenes  

 

 
73 http://www.celemony.com 
 

http://www.celemony.com/
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16 PRIME NUMBERS IN POETRY 

16.1 HAIKUS AND TANKAS 

 

 

Matsuo Bashô (松尾芭蕉), 1644-1695 

 

 

道のべに清水流るる柳影 

しばしとてこそ立ちどまりつれ 
 

Michi no be ni 
Shimizu nagaruru 

Yanagikage 
Shibashi tote koso 
Tachidomaritsure 

 

荒海や 

佐渡によこたふ 

天河 
 

ura umi ya 
sado ni yokotau 

ama no gawa 
 

Tosende See. 
nur die Milchstraße reicht 

zur Insel Sado hinüber. 
 

Turbulent the sea— 
across to Sado stretches 

the Milky Way 



 

 

古池や 

蛙飛び込む 

水の音 
 

furu ike ya 
kawazu tobikomu 

mizu no oto 
 

Der alte Weiher: 
Ein Frosch springt hinein. 

Oh! Das Geräusch des Wassers 
 

Ah! The ancient pond 
As a frog takes the plunge 

Sound of the water 
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Wo am Wegerand ein Bach 

Fließt mit glasklarem Wasser 
Und eine Weide steht, 

Da würde ich gerne noch bleiben: 
“Ach, nur ein Weilchen” 

 
Along the road 

A pure stream flows 
In the shade of a willow 

Wanting to rest 
I paused – and have not left 

Saigyō (1118-1190) 

 

What do these three Japanese poems from the 12th and 17th centuries have to do with 

prime numbers (the first two are haikus; the third one, a tanka)?  

It is the form that is reflected in the number of syllables (so-called ‘mores’). This form 

unfortunately exists only in Japanese, since the translation into other languages results in 

a different number of syllables. 

A haiku consists of three lines (word groups) each with (5-7-5) syllables, thus 17 syllables 

altogether. 

A tanka consists of five lines (word groups) each with (5-7-5-7-7) syllables, a total of 31 

syllables. 

All numbers of syllables occurring are prime numbers! Haikus and tankas have no rhyme 

and act mostly (but not always) from nature. Haikus and tankas are meant to convey 

feelings and moments of experience. In contrast to the outer structure of the rhymes that 

prevails in occidental poetry, it is the prime number of the syllables that allows each poem 

to have an individual, exceptional structure. 

Daniel Tammet has followed up this subject extensively in his book Thinking in 

numbers74. Tammet writes: 

"Prime numbers contribute to the haiku form's elemental simplicity. Each word an 

image calls out for our undivided attention. The result is an impression of sudden, 

striking insight, as if the poem's objects had been put into words for the very first 

time…As I think of the complicity between poems and primes, perhaps the only surprise 

is that we should even find it surprising. Viewed one way, the relationship makes a 

perfect kind of sense. Poetry and prime numbers have this in common: both are as 

unpredictable, difficult to define and multiple-meaning as in life…Poems and primes 

 
74 Thinking in numbers p. 189 (United Kingdom, 2012) 
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are tricky things to recognize. A glance will usually not suffice to tell us if such-and-

such a number has factors, or whether a given text contains much meaning…" 

 

Daniel Tammet is one of an estimated 100 ‘savants’ alive today. 

He learns new languages within a week and calculates almost as fast as a computer. He 

also holds the European record for reciting from memory the digits of the number 𝑝𝑖 
(22514 decimal digits, as of June 2016). 

16.2 SESTINAS 

Another type of poem that long ago passed into oblivion, and in which primes also loomed 

large, is the sestine. The sestine is a verse form comprising six stanzas of six lines each 

with a final stanza of three lines. The name comes from the word 'sesto' (six). The inventor 

of the sestine was the French troubadour Arnaut Daniel, who lived in Provence from 1150 

to 1200. 

Similar to the Japanese haiku, the sestine is not held together by devices like rhyme or 

symbolism. Unlike the haiku, however, the number of syllables or words per line does 

not play a big role. In German, however, the iambic verse meter is preferred. 

The structure that holds a sestine together is the following: each sestine has a 'core' of six 

words. The last word of a line must be one of these 6 core words, in fact alternating, until 

all six core words have been used up, which obviously occurs after six lines. For the next 

group of 6 lines, the same principle is applied, but with a different order of the core words, 

each at the end of the line. 

It can be seen that the ‘power’ and the almost musical appeal of the poems lie in this 

repetition. In the course of the 36-line poem, each core word occurs exactly 6 times. The 

order in which the core words are permuted within a group of six is complicated and 

reminiscent of throwing a dice. Let us suppose that our core words are numbered from 1 

to 6; then the (ending) core words in the entire poem appear in the following order: 

stanza 1: 1, 2, 3, 4, 5, 6 

stanza 2: 6, 1, 5, 2, 4, 3 

stanza 3: 3, 6, 4, 1, 2, 5 

stanza 4: 5, 3, 2, 6, 1, 4 

stanza 5: 4, 5, 1, 3, 6, 2 

stanza 6: 2, 4, 6, 5, 3, 1 

Final stanza: (1, 2), (3, 4), (5, 6) 

Note: in the three-line final stanza, there are two key words per line (one at the end and 

one within the line). The order of the key words in the final stanza can, however, also be 

different; in the ending lines, every core word must occur exactly once. 

Here is an example of a sestine (in German) that the author found on the Internet:75 

 
75 http://www.leselupe.de/lw/titel-Gedichtstrophen--Die-Sestine-100219.htm 

http://www.leselupe.de/lw/titel-Gedichtstrophen--Die-Sestine-100219.htm


Sestinas  

262 
 

Martin Opitz, in "Schäfferey von der Nimfen Hercinie" 

Wo ist mein Auffenthalt, mein Trost und schönes Liecht? 

Der trübe Winter kömpt, die Nacht verkürtzt den Tag; 

Ich irre gantz betrübt umb diesen öden Waldt. 

Doch were gleich jetzt Lentz und Tag ohn alle Nacht 

Und hett' ich für den Wald die Lust der gantzen Welt,  

Was ist Welt, Tag und Lentz, wo nicht ist meine Zier? 

 

Ein schönes frisches Quell giebt Blumen ihre Zier,  

Dem starcken Adler ist nichts liebers als das Liecht,  

Die süsse Nachtigal singt frölich auff den Tag,  

Die Lerche suchet Korn, die Ringeltaube Waldt,  

Der Reiger einen Teich, die Eule trübe Nacht; 

Mein Lieb, ich suche dich für allem auff der Welt. 

 

So lange bist du mir das liebste von der Welt. 

So lange Pales hegt der grünen Weide Zier,  

So lange Lucifer entdeckt das klare Liecht. 

So lange Titans Glantz bescheint den hellen Tag,  

So lange Bacchus liebt den Wein und Pan den Waldt,  

So lange Cynthia uns leuchtet bey der Nacht,  

 

Die schnelle Hindin sucht den Hirschen in der Nacht,  

Was schwimmt und geht und kreucht, liebt durch die gantze Welt,  

Die grimme Wölffin schätzt den Wolff für ihre Zier,  

Die Sternen leihen uns zum Lieben selbst ihr Liecht; 

Ich aber gehe nun allhier schon manchen Tag,  

O Schwester, ohne dich durch Berge, Wildt und Wald. 

 

Was ist, wo du nicht bist? So viel der kühle Waldt 

Ein Sandfeldt übertrifft, der Morgen für der Nacht 

Uns angenemer ist, der Mahler dieser Welt,  

Der Lentz, für Winterlufft, so viel ist deine Zier,  

Die Schönheit, diese Lust mir lieber, o mein Liecht,  

Als das, so weit und breit bestralt wird durch den Tag. 

 

Der Trost erquickt mich doch, es komme fast der Tag,  

Da ich nicht werde mehr bewohnen Berg und Wald,  

Da deine Gegenwart und die gewünschte Nacht 

Der Treu noch lohnen soll; in dessen wird die Welt 

Vergessen ihrer selbst, eh' als ich deiner Zier,  

Mein höchster Auffenthalt, mein Trost und schönes Liecht. 

 

Laß wachsen, edler Wald, mit dir mein treues Liecht,  

Die liebste von der Welt; es schade deiner Zier,  

O Baum, kein heisser Tag und keine kalte Nacht. 

The permutated core words at the end of the lines resemble the permutations (periods) of 

the digits of a cyclic number. Cyclic numbers are generated by division by prime 

numbers. For example, the following six cyclic numbers 1,4,2,8,5,7 are generated if the 

number 1 is divided by the prime number 7:  

1/7 = 0,142857 142857 142857 …. 
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The permutations of these 6  numbers 1,4,2,8,5,7  are generated by multiplying the 

number 142857 by all the integers 1 ≤ 𝑛 < 7: 

142857 ⋅ 1 = 142857 

142857 ⋅ 2 = 285714 

142857 ⋅ 3 = 428571 

142857 ⋅ 4 = 571428 

142857 ⋅ 5 = 714285 

142857 ⋅ 6 = 857142 

The whole thing bears a striking resemblance to the permutations of the core words of the 

sestine! 

Once again, we go back to the sequence of terminating core words: the construction 

algorithm of the permutations, which appeared to be complicated at first, turns out in the 

end to be quite simple and is illustrated by the following zigzag scheme: 

 

1 2 3 4 5 6 
 

 

yields: 

 6 1 5 2 4 3 

 

yields: 

3 6 4 1 2 5 

etc. 

The question now arises as to why the number of six verses had such an importance in 

poetry, and not poems of four stanzas (‘tetrine’) or seven stanzas (‘septine’). The beauty 

of the sestine, which is based on its form, is that after six iterative applications of the 

zigzag scheme to the original ordered sequence 1,2,3,4,5,6 the same order 1,2,3,4,5,6 as 

in the beginning appears again and that the respective core word occurs in every stanza 

at another line number. We now generalize and demand that the same principle should 

apply to a 'beautiful n-tine’: 

Let our initial sequence of core words be: 1,2,3, … , 𝑛. 

If the zigzag scheme is applied (𝑛 − 1) times, the index of the core word should be 

different for each iteration step (i.e. a core word may not occur in two different stanzas in 

the same row (e.g. the 5th row)). 

But this is exactly the case for some values of 𝑛. For example, a 'septine' would lead to 

unpleasant ‘word accumulations’ of the respective core word in the 5th line (here the 

schema of the core word indexes, the number in the 𝑖 th column indicates the 

corresponding line in the verse): 

stanza 1: 1, 2, 3, 4, 5, 6, 7 

stanza 2: 7, 1, 6, 2, 5, 3, 4 
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stanza 3: 4, 7, 3, 1, 5, 6, 2 

stanza 4: 2, 4, 6, 7, 5, 3, 1 

stanza 5: 1, 2, 3, 4, 5, 6, 7 

 

In addition, the scheme repeats itself after four permutations and not as before, only after 

7 permutations. 

With the demands of the principle of ‘beautiful’ n-tines, a more exact investigation gives 

the following results for values from 3 to 𝑛: 

‘n-tines’ are ‘beautiful ‘, if 𝑛 ⋅ 2 + 1 is a prime number. That is why 'tritines', 'quintines', 

sestines, or ‘11-tines’ are beautiful, but not 'quartines' or 'decines' 

This condition is satisfied for 31 numbers 𝑛 < 100. 

Note: a simpler version of the sestine is the ghazel verse form of the Arabic world, in 

which there is only one core word (the last word of a line) that is repeated for every second 

line.76 

 

 

 

 
76 https://de.wikipedia.org/wiki/Ghasel 

https://de.wikipedia.org/wiki/Ghasel
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16.3 MATTER FOR REFLECTION 

Archaic Torso of Apollo 

We cannot know his legendary head 

with eyes like ripening fruit. And yet his torso 

is still suffused with brilliance from inside,  

like a lamp, in which his gaze, now turned to low,  

 

gleams in all its power. Otherwise 

the curved breast could not dazzle you so, nor could  

a smile run through the placid hips and thighs 

to that dark center where procreation flared. 

 

Otherwise this stone would seem defaced 

beneath the translucent cascade of the shoulders 

and would not glisten like a wild beast’s fur: 

 

would not, from all the borders of itself,  

burst like a star: for here there is no place 

that does not see you. You must change your life. 

. 

(Rainer Maria Rilke) 

This is one of Rilke's most beautiful, but also most puzzling, poems. The reader may 

wonder what it has to do with prime numbers… 

Already from the form of the poem (sonnet), we see something far more is being 

attempted here than a simple textual message. It touches us in a way that one can only 

describe as 'mysterious'. 

Interpretations of this poem differ widely. Some people read into it the basic, 

philosophical questions of human life: "Who am I?", "What should I do?" and find 

answers in Rilke's poem (at least hints of answers…). 

A very nice interpretation can be found in Victor Zuckerkandl’s book Vom musikalischen 

Denken77. 

In this book, Zuckerkandl describes how the observer and thing observed suddenly 

reverse roles: the work of art I am contemplating becomes the observer and looks at me, 

making me the thing observed, and its wordless gaze is transmuted into the command: 

"You must change your life". 

 
77 Victor Zuckerkandl: Vom musikalischen Denken (p.151), Rhein-Verlag Zürich, 1964 
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For the further interpretation, Zuckerkandl cites the story of the butterfly’s dream of 

Zhuangzi78, which is so beautiful that it is also quoted here: 

The dream of the butterfly 

Once Zhuang Zhou dreamed he was a butterfly, a fluttering butterfly. What fun he had, 

doing as he pleased! He did not know he was Zhou. Suddenly he woke up and found 

himself to be Zhou. He did not know whether Zhou had dreamed he was a butterfly or a 

butterfly had dreamed he was Zhou. Between Zhou and the butterfly there must be some 

distinction. This is what is meant by the transformation of things. 

This deeply meaningful parable (like Rilke's poem) shows that both levels have the same 

quality of ‘reality’ and are coequal to each other. Every work of art has its own life; 

indeed, it is alive. Therefore, it can also look at me. For the artist and the process of 

creation, this means that a work of art (as soon as a certain threshold is passed during the 

process of creation) begins in effect to ‘come alive’ and therefore to have a will of its 

own. The work of art 'communicates' with the artist and wants to participate in its 

'creation'; it demands to be realized… 

The verse form, i.e. the numerical structure, in which prime numbers play a role, as well 

as the ‘meter’ of the poem and, of course, the actual text comprise a complex network in 

which the concept of 'aesthetics' first becomes meaningful. 

That this immanent sense cannot always be rationally and logically put into words, but 

nevertheless is "understood" by our aesthetic feeling, reminds us very much of the haiku 

and other Japanese verse forms discussed in the last chapter. 

Here, too, the two (supposedly independent) levels of meaning, "form" and "content", 

seem to be inseparably merged, or, as Ludwig Wittgenstein put it: 

Ethics and aesthetics are One79. 

A more profound examination of Wittgenstein's argument is needed if we wish to 

understand exactly what he means by this. Similarities to many koans from Zen Buddhism 

are obvious. Here's an example: 

 

"The eye with which I see God,  

Is exactly the same eye with which God looks at me. " 

"Show me this eye!" 

In these poems the reader interested in mathematics immediately finds the element of 

self-reference and recurrence or recursion. Recursion therefore appears to be not only a 

very powerful instrument in mathematics, but also a means in philosophy and poetry to 

'give voice' to things that cannot be expressed by words: insights into a higher level of 

truth? 

 
78 Dschuang Dsi: Das wahre Buch vom südlichen Blütenland: Eugen Diederichs Verlag München 
(1988) 
79 From Tractatus logico-philosophicus by Ludwig Wittgenstein 
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17 PRIME NUMBERS AND EXTRATERRESTRIAL LIFE FORMS 

If, in the not-too-distant future, we should happen to receive electromagnetic signals from 

extraterrestrial civilizations, a discussion will be launched as to what form 

communication with intelligent extraterrestrial beings should take. The search for such 

signals has been going on for years and is mainly run by the project 'SETI' ('Search for 

Extraterrestrial Intelligence’) in Mountain View near San Francisco.80 

First of all, one must be aware that the nearest extraterrestrial planet inhabited with 

intelligent living things will not be found in our immediate neighbourhood, but will most 

likely be several hundreds, if not thousands, of light years away from the Earth. 

Communication could only take place over a period of many centuries. In what 

'interstellar language' should we send messages, or do we expect interstellar messages? 

Basically, both communication partners must find something that is common to both. 

This is, on the one hand, the transmission path using electromagnetic waves, which, 

according to our current knowledge, is the only practicable method. One can assume that 

extraterrestrial life forms, by the time they are engaged in a search for 'cosmic' 

neighbours, will have mastered this technique.  

The second known class of waveforms capable of dissemination over enormous distances 

are the recently discovered gravitational waves. It is conceivable, theoretically, that aliens 

might employ these as a medium of communication. At the moment, however, we do not 

have any technology that would allow signals to be detected in modulated gravitational 

waves. 

The language that is probably mastered by all intelligent life forms in the universe is the 

language of mathematics, which pervades every realm of our existence. All our physics 

is written in the language of mathematics. Thus, we can be sure that the language of 

mathematics is "understood" throughout the universe. Note: there are also theories 

assuming a variety of universes that may also have a completely different physics and 

perhaps even a different mathematics (Tegmark, 2015). If such universes exist, they 

would not be 'physically' accessible to our universe anyway. We restrict ourselves here to 

consideration of our universe, which is the only one observable by us. 

Prime numbers are perfect for such interstellar messages, since a sequence of such 

numbers would almost certainly be the product of intelligent design rather than pure 

chance. Our universe contains very well modulated electromagnetic signals, mostly from 

rotating neutron stars or other physical processes (wherever charged objects are strongly 

accelerated). However, what is common to all these previously observed signals is that 

they are more or less periodic, and therefore contain no information. 

Since the formal language in which mathematics is carried on at different places in our 

universe will also differ, it would make sense to keep the message as simple as possible. 

The simplest option mathematics offers are the prime numbers. Therefore, all experts to 

have considered the question of extraterrestrial communication agree that transmitting the 

prime numbers – let’s say, up to 100 – on as many interesting frequencies as possible (e.g. 

the absorption frequency of hydrogen) would be an excellent means of interstellar 

 
80 http://www.seti.org 
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communication. The information could, for example, be wrapped in pulsed 'packets', the 

temporal distances between the pulses being proportional to the differences of the prime 

numbers. 

This is exactly what happens in the movie 'Contact'81 from 1997, starring Jodie Foster. 

 
81 
https://web.archive.org/web/20071125172406/http://www.cisci.net/film.php?lang=2&display=
5&topic=Astronomie%20und%20Astrophysik&seq_id=42&film=26 

https://web.archive.org/web/20071125172406/http:/www.cisci.net/film.php?lang=2&display=5&topic=Astronomie%20und%20Astrophysik&seq_id=42&film=26
https://web.archive.org/web/20071125172406/http:/www.cisci.net/film.php?lang=2&display=5&topic=Astronomie%20und%20Astrophysik&seq_id=42&film=26
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17.1 THE ARECIBO MESSAGE 

On 16 November 1974, scientists at the Arecibo Observatory in New Mexico sent a 

message from mankind into space — directed specifically at the globular cluster M13, 

which is 25,000 light years from Earth and known to astronomers by the name NGC 

6205. This spherical star cluster (aka globular cluster) is visible on a clear night with bare 

eyes and is located in the constellation of Hercules between the stars 휂 and 𝜉, above 𝜉 

Herculis: 

 

Figure 134. Constellation Hercules, with globular cluster M13 (destination of the Arecibo 
message) 

Mathematica: 

ConstellationData["Herculis","ConstellationGraphic"] 

 

The message was digital and consisted of 1679 zeros and ones. 
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Since the globular cluster is (using an ‘astronomical scale’) relatively close to our solar 

system and has a high star density (it consists of about 300000 single stars), it seemed to 

be the ideal destination for a message to extraterrestrial life forms. An extraterrestrial 

receiver would first have to recognize the length of the message (1679 bits) as the product 

of the primes 23 and 73 and thus interpret as a binary image with the dimensions 73 ∗
 23. Then the following picture results from the binary sequence: 

 

 

 

Figure 135: the Arecibo message 

 

 

xxx 

 

The message can only be deciphered if the 

sequence is represented as an image with the 

dimensions of the prime factor assignment: At 

the top, the basic 'alphabet' of the binary 

coding of the numbers 1 to 10 is set out. These 

symbols are, so to speak, instructions as to 

how to read the following illustrations. In the 

picture, you will find information about our 

chemical elements, amino acid nucleotides, 

DNA structure, mankind, the planet Earth, 

etc… 

More detailed information can be found on the 

Internet. 

The Mathematica program code is contained 

in the Appendix. 

A reply to the message from the star cluster 

M13 or its "cosmic neighborhood" would be 

expected in about 50,000 years. 
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18 MISCELLANY 

18.1 THE NUMBER 12 

The number 12 has many special properties: 

1) It was prevalent in units of measurement and counting systems until quite 

recently – a case in point being the British (twelve-penny) shilling, which was 

only  abandoned in 1971 – and, even today, eggs are still sold by the dozen. 

2) The year has 12 months; the day has 2 x 12 hours. 

3) Jesus had 12 apostles; Israel had 12 tribes. 

4) The octave has 12 semitone steps. 

5) It is the smallest ‘abundant’ number (abundant numbers are numbers, whose ‘true’ 

sum of divisors is larger than the number itself …) 

6) It is the 3-dimensional kissing number.82  

7) There are 12 signs of the zodiac. 

8) There are 12 Olympic gods. 

9) The 12𝑡ℎ Fibonacci number is (among the infinitely many Fibonacci numbers) 

the only square in this sequence and it has the value 122 = 144. 

10) 12 is the smallest ‘sublime’ number (at least two sublime numbers are known). 

Note: a sublime number is a number where the sum of its divisors and the number 

of its divisors are perfect numbers. The second such number known is 
6086555670238378989670371734243169622657830773351885970528324860512791691264 

11) It plays a special role in music: the 12-bar blues scheme. 

12) The number 12 is the only number 𝑛  for which the notable relation 𝑛 =
𝑟4(𝑛)

8
 

applies (where 𝑟4(𝑛) is the number of four-dimensional lattice points of a squared 

radius of 𝑛). 

13) The world of the physicist Burkhard Heim contains exactly 12 dimensions. 

14) It appears in Ramanujan's magical formula: 1 + 2 + 3 + 4 +⋯ = −
1

12
  

15) The 12th Mersenne prime number exponent has the striking short OCRON 

representation "2PPPP" which contains neither the ^ - nor the * - operator (see 

chapter 10.1) 
 

 

 

 
82 https://de.wikipedia.org/wiki/Kusszahl 

https://de.wikipedia.org/wiki/Kusszahl
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18.2 THE NUMBER 313  

There are also primes in comics! Who does not know Donald Duck's bright red duck 

convertible ("1934 Belchfire Runabout") with the license plate number 313? 

 

313 is a special number in several respects:  

- It is a 3-digit palindromic prime number (gives the same value read forwards and 

backwards) 

- It is in binary representation (100111001) palindromic and 100111001 decimal 

interpreted also gives a palindromic prime number! 

The website https://primes.utm.edu/curios/page.php/313.html lists another 40 special 

features of this number … 

  

https://primes.utm.edu/curios/page.php/313.html
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18.3 PRIME NUMBERS AND THE ARTS  

The following figure shows the primes in the Gaussian plane after the two-colour (red / 

yellow) representation has been Fourier transformed, numerically integrated in the 

frequency domain by division with the frequencies, and then retransformed. A gimmick, 

though one can see that using scant mathematical resources, landscape-like graphics can 

be generated from prime numbers. 

 

Figure 136. Gaussian prime numbers, filtered with Fourier transforms 
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19 CONCLUSION 

Prime numbers have been a source of fascination to us for as long we have been studying 

mathematics. Although we know a lot about them, they have lost none of their mystique. 

They pervade many areas of all possible sciences and also inhabit the realms of culture, 

such as poetry, as well as economic life. 

We have come to understand a great deal about them, but not the true, the real "message" 

that is hidden in them. 

 

There remain many secrets still to be uncovered! 
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20 APPENDIX 

20.1 CATALAN’S CONJECTURE 

Catalan’s conjecture states that there are no integer powers of natural numbers that 

differ exactly by the value 1, with one exception: 

23 = 8 and 32 = 9  

In other words: the only integer solution of the equation  

𝒎𝒑 − 𝒏𝒒 = 𝟏,where 𝒎,𝒏, 𝒑, 𝒒 > 𝟏 is 𝒎 = 𝟑, 𝒏 = 𝟐, 𝒑 = 𝟐, 𝒒 = 𝟑 (159) 

 

It was proved in the year 2002 by Preda Mihăilescu. 

. 

The proof was obtained with the help of ‘double Wieferich primes’ (see 4.14). 
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20.2 STATISTICAL ANOMALIES OF THE LAST DIGITS IN THE PRIME 
NUMBER SEQUENCE 

What statistical anomalies come to light if we include still more of the preceding prime 

numbers in our investigation? Here are the results if we consider not only the predecessors 

but also the pre-predecessors: 

 

Figure 137. Incidence of final digits repeating in the prime number sequence (predecessor:1,x)  

 

Figure 138. Incidence of final digits repeating in the prime number sequence (predecessor:3,x)  
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Figure 139. Incidence of final digits repeating in the prime number sequence (predecessor:7,x)  

 

Figure 140. Incidence of final digits repeating in the prime number sequence (predecessor:9,x)  

It can be seen that the tendency of the end digits not to repeat themselves increases still 

further. For example, the probability that the next prime number again has a last digit 9 

after two prime numbers with the final digit 9 is only 13.48 %. 
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20.3 AN INTERESTING SEQUENCE: THE PERRIN SEQUENCE 

The Perrin sequence (also referred to as the Skiponacci sequence) is an interesting 

curiosity: 

Its recursive definition is: 

 

𝑎(𝑛)  =  𝑎(𝑛 − 2) +  𝑎(𝑛 − 3),where 𝑎(0)  =  3, 𝑎(1)  =  0, 𝑎(2)  =  2 (160) 

 

It was actually discovered by Édouard Lucas in 1878. The peculiarity is that the 𝑝th 

sequence member is divisible by 𝑝 (or yields mod 𝑝 0) if 𝑝 is a prime number. 

Mathematica-Code: 

LinearRecurrence[{0, 1, 1}, {3, 0, 2}, 50]  

 

{0,2,3,2,5,5,7,10,12,17,22,29,39,51,68,90,119,158,209,277,367,486,644,

853,1130,1497,1983,2627,3480,4610,6107,8090,10717,14197,18807,24914,33

004,43721,57918,76725,101639,134643,178364,236282,313007,414646,549289

,727653,963935} 

 

or (replacing the prime numbers with ‘O’ for improved visibility): 
reduced=Mod[LinearRecurrence[{0,1,1},{3,0,2}, {2,50}], Range[2,50]-1] 

 

{0,0,0,2,0,5,0,2,3,7,0,5,0,9,8,10,0,14,0,17,10,2,0,13,5,15,12,23,0,20,

0,26,25,19,12,2,0,21,3,5,0,33,0,2,32,2,0,21,7} 

 

Let’s take the ‘0’ positions: 
Flatten[Position[reduced, 0]] 

{1,2,3,5,7,11,13,17,19,23,29,31,37,41,43,47} 

 

Anyone who now thinks that this method always provides prime numbers is, 

unfortunately, mistaken. The first counter example 271441 =  5212  for a composite 

number is, however, already very large and is a long time in coming (in place of the red 

‘0’, there should be a value > 0). 
 

Mathematica: 

Mod[LinearRecurrence[{0,1,1},{3,0,2},{271440,271445}],{271439,271440,2

71441,271442,271443,271444}] 

 

{107778,199578,0,135723,3,112577} 

 

The 'composite numbers' of the Perrin sequence for which 𝑛 is a divisor of 𝑃𝑛 are called 

Perrin pseudoprimes. At present 658 of these are known, the smallest being 271441 =
 5212   (as of Dec. 2015). 

It is assumed that there are infinitely many Perrin pseudoprimes.83 

 

The Perrin sequence is closely related to the sequence of geometrically increasing 

equilateral triangles:  

 
83  http://www.pseudoprime.com/pseudo3.pdf  

http://www.pseudoprime.com/pseudo3.pdf
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The sides of the equilateral triangles follow the Perrin sequence as well as a second 

recursion sequence: 𝑎(𝑛)  =  𝑎(𝑛 − 1) +  𝑎(𝑛 − 5) 
The characteristic polynomial of the Perrin sequence is thus: 

 

(𝑥3 − 𝑥 − 1) or ( 𝑥5 − 𝑥4 − 1) 

 

The zero of the first polynomial can be written as a nested infinite expression of 3rd 

roots: 

𝑟 = √1 + √1 + √1 + √1 +⋯
3333

= 1.324717957244746 

 

The Perrin sequence can also be written as a closed expression: 

if 

Θ = acos(
−𝑟

3
2

2
)  then 

 

𝑠𝑛 = 𝑟
𝑛 + 2

cos (𝑛Θ)

𝑟
𝑛
2

 

 

In many respects the Perrin sequence appears even more interesting than the Fibonacci 

sequence. It possesses many other remarkable properties that we cannot go into here. The 

reader can find further information on the Internet.84 

 
84 http://www.mathpages.com/home/kmath345/kmath345.htm 

http://www.mathpages.com/home/kmath345/kmath345.htm
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20.4 MORE CONJECTURES ABOUT PRIME NUMBERS 

The Goldbach conjecture 

The Goldbach conjecture states that any natural even number 𝑛 > 2 can be written as the 

sum of two prime numbers. The conjecture has been verified numerically for all 𝑛 < 4 ⋅
1018  (as of Oct. 2015). The 'extended Goldbach conjecture' gives an estimate for the 

number of representations  𝑅𝑔 of a number 𝑛 as the sum of 2 prime numbers: 

𝑅𝑔(𝑛) ≈ 2Π2∏
𝑝𝑘 − 1

𝑝𝑘 − 2𝑘=2
𝑝𝑘|𝑛

∫
𝑑𝑥

(ln 𝑥)2
= 2Π2∏

𝑝𝑘 − 1

𝑝𝑘 − 2𝑘=2
𝑝𝑘|𝑛

[𝑙𝑖(𝑥) −
𝑥

ln (𝑥)
]

𝑛

2

𝑛
2

 (161) 

 

Mathematica program (from oeis.org): 

a[n_] := Length @ Select[PowersRepresentations[2 n, 2, 1], (#[[1]] == 

1 || PrimeQ[#[[1]]]) && (#[[2]] == 1 || PrimeQ[#[[2]]]) &]; Array[a, 

98] (* Jean-François Alcover, Apr 11 2011 *)  

 

nn = 10^2; ps = Boole[PrimeQ[Range[2*nn]]]; ps[[1]] = 1; 

Table[Sum[ps[[i]] ps[[2*n - i]], {i, n}], {n, nn}] (* T. D. Noe, Apr 

11 2011 *)  

  

https://oeis.org/wiki/User:Jean-François_Alcover
https://oeis.org/wiki/User:T._D._Noe
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20.5 PRIME N-TUPLETS: CONSTELLATIONS OF PRIME NUMBERS  

Let us assume that we have an arbitrarily large prime p at index 1. Then p+1 can certainly 

be divided by 2. Hence, as in the Sieve of Eratosthenes, we delete all the following 

numbers divisible by 2: 

p 2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2 

 

The next possible prime is at p+2 at index 3(twin). 

p 2 p 2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2 

 

The group p-2-p must contain at least one number divisible by 3. This can only be 

the 2 at the 2nd position. So we delete all parts divisible by 3 (there are, of course, 

multiple deletions at the positions divisible by 6): 

p 
2 

3 
p 2 3 2  

2 

3 
 2 3 2  

2 

3 
 2 3 2  

2 

3 
 2 3 2  

2 

3 
 2 3 2  

2 

3 
 2 3 2  

2 

3 
 2 

 

The next possible prime is at p+6 at index 7: (triplet). 

p 
2 

3 
p 2 3 2 p 

2 

3 
 2 3 2  

2 

3 
 2 3 2  

2 

3 
 2 3 2  

2 

3 
 2 3 2  

2 

3 
 2 3 2  

2 

3 
 2 

 

For the next sifting operation (divisibility by 5), one cannot find any unique requirement 

(it cannot be determined which of the first 5 numbers has to be divisible by 5 since we 

still have ambiguity (candidates: positions no. 4 and 5). Therefore the next possible 

prime number is at position p+8 at index 9: (quadruplet). 

p 
2 

3 
p 2 3 2 p 

2 

3 
p 2 3 2  

2 

3 
 2 3 2  

2 

3 
 2 3 2  

2 

3 
 2 3 2  

2 

3 
 2 3 2  

2 

3 
 2 

 

The group p-2-p-2-3 must contain at least one number divisible by 5. This can only 

be at the 5th position with ‘3’. Reason: the 2th position 
2
3

 can be excluded, since then 

also the 7th position would have to be divisible by 5. This position, however, is already 

occupied by p. The same holds true for the 4th position ‘2’, since the 9th position would 

then also be divisible by 5, which is also already occupied by p. Thus the 5th position 

with the '3' remains as the only possibility. We delete all positions divisible by 5: 

p 
2 

3 
p 2 

3 

5 
2 p 

2 

3 
p 
2 

5 
3 2  

2 

3 
5 2 3 2  

2 

3 

5 

 2 3 2 5 
2 

3 
 2 3 

2 

5 
 
2 

3 
 2 

3 

5 
2  

2 

3 
 
2 

5 

 

The next possible prime is at p+12 at index 13: (pentuplet). 

p 
2 

3 
p 2 

3 

5 
2 p 

2 

3 
p 
2 

5 
3 2 p 

2 

3 
5 2 3 2  

2 

3 

5 

 2 3 2 5 
2 

3 
 2 3 

2 

5 
 
2 

3 
 2 

3 

5 
2  

2 

3 
 
2 

5 
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For the next sifting operation (divisibility by 7), we cannot find any unique requirement 

(it cannot be determined which of the first 7 numbers has to be divisible by 7 since we 

still have ambiguity (candidates: positions no. 4 and 5). Therefore the next possible 

prime number is at position p+18 at index 19: (6-tuplet). 

p 
2 

3 
p 2 

3 

5 
2 p 

2 

3 
p 
2 

5 
3 2 p 

2 

3 
5 2 3 2 p 

2 

3 

5 

 2 3 2 5 
2 

3 
 2 3 

2 

5 
 
2 

3 
 2 

3 

5 
2  

2 

3 
 
2 

5 

 

The group p-
𝟐
𝟑

-p-2-
𝟑
𝟓

-2- p must contain at least one number divisible by 7. This can 

only be at the 4th position with ‘2’. Reason: the 2th position 
2
3

 can be excluded, since 

then also the 9th position would have to be divisible by 7. This position, however, is 

already occupied by p. The same holds true for the 5th position 
2
3

, since the 19th position 

would then also be divisible by 7, which is also already occupied by p. The same holds 

true for the 6th position ‘2’, since the 13th position would then also be divisible by 7, 

which is also already occupied by p Thus the 4th position with the '2' remains as the only 

possible. We delete all positions divisible by 7: 

p 
2 

3 
p 
2 

7 

3 

5 
2 p 

2 

3 
p 
2 

5 

3 

7 
2 p 

2 

3 
5 2 3 

2 

7 
p 

2 

3 

5 

 2 3 2 
5 

7 

2 

3 
 2 3 

2 

5 
 

2 

3 

7 

 2 
3 

5 
2  

2 

3 
7 
2 

5 

 

The next possible prime is at p+20 at index 21: (7-tuplet) 

p 
2 

3 
p 
2 

7 

3 

5 
2 p 

2 

3 
p 
2 

5 

3 

7 
2 p 

2 

3 
5 2 3 

2 

7 
p 

2 

3 

5 

p 2 3 2 
5 

7 

2 

3 
 2 3 

2 

5 
 

2 

3 

7 

 2 
3 

5 
2  

2 

3 
7 
2 

5 

 

For the next sifting operation (divisibility by 11), one cannot find any unique requirement 

(it cannot be determined which of the first 11 numbers has to be divisible by 11 since we 

still have ambiguity (candidates: positions no. 4, 5, 6, 11)). Therefore the next possible 

prime number is at position p+26 at index 27: (8-tuplet). 

p 
2 

3 
p 
2 

7 

3 

5 
2 p 

2 

3 
p 
2 

5 

3 

7 
2 p 

2 

3 
5 2 3 

2 

7 
p 

2 

3 

5 

p 2 3 2 
5 

7 

2 

3 
p 2 3 

2 

5 
 

2 

3 

7 

 2 
3 

5 
2  

2 

3 
7 
2 

5 

 

For the next sifting operation (divisibility by 11), one cannot find any unique requirement 

(it cannot be determined which of the first 11 numbers has to be divisible by 11 since we 

still have ambiguity (candidates: positions no. 4, 6, 11)). Therefore the next possible 

prime number is at position p+30 at index 31: (9-tuplet). 

p 
2 

3 
p 
2 

7 

3 

5 
2 p 

2 

3 
p 
2 

5 

3 

7 
2 p 

2 

3 
5 2 3 

2 

7 
p 

2 

3 

5 

p 2 3 2 
5 

7 

2 

3 
p 2 3 

2 

5 
p 

2 

3 

7 

 2 
3 

5 
2  

2 

3 
7 
2 

5 

Etc. 
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20.6 EXPLICIT SOLUTIONS FROM CHAPTER 4.10.1 

Here are some explicit solutions of the recurrence equations from Table 10: 

Perrin sequence: 

𝑃𝑛 = 2
−𝑛 3⁄ 3−2𝑛 3⁄ (√9 − √69

3

+ √9 + √69
3

)𝑛

+ 2−4𝑛 3⁄ 3−2𝑛 3⁄ (𝑖(√3 + 𝑖)√9 − √69
3

+ (−1 − 𝑖√3)√9 + √69
3

)𝑛

+ 2−4𝑛 3⁄ 3−2𝑛 3⁄ ((−1 − 𝑖√3)√9 − √69
3

+ 𝑖(√3 + 𝑖)√9 + √69
3

)𝑛 

 

(162) 

Complementary Perrin sequence: 

𝑃𝑛
∗ = (

3

−1 + √
1
2
(25 − 3√69)

3

+ √
1
2
(25 + 3√69)

3

)−𝑛

+ (−
1

3
+
1

6
𝑖(√3 + 𝑖)√

1

2
(25 − 3√69)

3

−
1

6
(1 + 𝑖√3)√

1

2
(25 + 3√69)

3

)𝑛

+ (−
1

3
−
1

6
(1 + 𝑖√3)√

1

2
(25 − 3√69)

3

+
1

6
𝑖(√3 + 𝑖)√

1

2
(25 + 3√69)

3

)𝑛 

 

(163) 

Padovan sequence: 

𝑃𝑛 = 2
−𝑛 3⁄ 3−2𝑛 3⁄ (√9 − √69

3

+ √9 + √69
3

)𝑛 +
1

23
(23 + √

23

2
(437 − 51√69)

3

+ √
23

2
(437 + 51√69)

3

)2−4𝑛 3⁄ 3−
2𝑛
3
−1((−1 − 𝑖√3)√9 − √69

3

+ 𝑖(√3 + 𝑖)√9 + √69
3

)𝑛 +
1

23
(92 + 𝑖22 3⁄ (√3

+ 𝑖)√23(437 − 51√69)
3

+ 22 3⁄ (−1

− 𝑖√3)√23(437 + 51√69)
3

)2−
4𝑛
3
−23−

2𝑛
3
−1(𝑖(√3 + 𝑖)√9 − √69

3

+ (−1 − 𝑖√3)√9 + √69
3

)𝑛

+ (
1

276
(92 + 22 3⁄ (−1 − 𝑖√3)√23(437 − 51√69)

3

+ 𝑖22 3⁄ (√3

+ 𝑖)√23(437 + 51√69)
3

))𝑛 

 

(164) 
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20.7 MORE ILLUSTRATIONS OF RG SEQUENCES 

Here are a few examples of type 4 RG sequences (EGOCRON4): 

 

 

Figure 141. RG sequences of type 4 EGOCRONs in the direction of positive indices (values 30 -44) 
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Figure 142. RG sequences of type 4 EGOCRONs in the direction of positive indices (values 60 -74) 
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Figure 143. RG sequences of type 4 EGOCRONs in the direction of positive indices (values 90 -107) 
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20.8 VIRTUAL OCRONS 

If we look at type 4 OCRONs, we see that there are OCRONs in which the symbol '*' 

does not occur, i.e. that only consist of the symbols "2", "P" and "^". These are prime 

numbers or powers of prime numbers. For the following studies we also need the 

OCRONs raised to a power for the base 2. As the reader knows by now, an OCRON 

raised to a power for a base 2 is created by prepending a "2" and appending "^" (below in 

green). Here are a few examples of OCRONs and their ‘powered’ versions (the 

'unpowered' part in black or blue): 

2 (4):  22^ 

3 (8):  22P^ 

4 (16):  222^^ 

5 (32):  22PP^ 

6 (64):  22P2*^, 22P^2^ 

7 (128):  222^P^ 

8 (256):  222P^^ 

9 (512):  22P2^^  

10 (1024): 22PP2*^, 22PP^2^ 

11 (2048): 22PPP^ 

12 (4096): 22P22^*^, 222^^2P^, 22^2P^2^ 

13 (8192): 22P2*P^ (no “*”-free OCRON representations) 

13 (𝟐𝟖𝟏𝟗𝟐): 222P2*P^^, 222PP^^222P^^^, 222^^22PPP^^  

14 (16384): 222^P2*^, 22^22^P^ 

15 (32768): 22PP2P*^, 22P^2PP^  

16 (65536): 2222^^^ 

17 (131072): 222^PP^ 

18 (262144): 22P2^2*^, 22^2P2^^  

19 (524288): 222P^P^ 

 

The OCRONs shown in blue are "*"-free OCRONs, which can be processed easily 

according to the OCRON rules. The OCRONs shown in red are "non-well-formed", i.e. 

they do not make sense as OCRONs of type 4. However, if they are raised to a power 

with the base 2 (or even ‘powered’ twice in the case of the number 13), they represent 

well-formed, interpretable OCRONs. We wish to call the red, ‘non-raised’ OCRONs', 

"virtual OCRONs", since they only make sense if they are raised to a power with a base 

of 2, one or more times. In order to obtain the value of a virtual OCRON, the numerical 

value of the n-times ‘powered’ OCRON must be ‘logarithmized’ again by applying 𝑛 

times with the logarithm for base 2. 

Finding equivalent, '*'-free OCRONs is a non-trivial task, because the whole set of 

degenerated OCRONs belonging to this OCRON must be searched for '*'-free OCRONs. 

The following theorem is a still unproven conjecture: 
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Each OCRON type 4 representation of a natural number 𝒏 ≥ 𝟐 is either "*"-free, 

or there are equivalent, degenerated ‘*’-free OCRON representations in the higher 

‘raised-to-OCRON-power’ levels of the OCRON. 

If this conjecture is true, we would have an OCRON representation of all natural numbers 

≥ 2  consisting only of the OCRON symbols "2", "P", and "^". This would be a 

description without the "multiplicative" operator "*". 

Virtual OCRONs have interesting properties. Here is a table with some degenerated, 

virtual OCRONs in the range 2 to 40: 

Table 28. Degenerated virtual OCRONs. Primes and prime powers in red (order: ord)  

N GC( P=1, 2=2, ^=0), OCRON, (ord) N GC(P=1, 2=2, ^=0), OCRON, (ord) 
1 - 21 1774, 2P^22^P (1) 

1978, 22^P^2P (1) 

13834, 2^^222P^P (2) 

2 2, 2 (0) 22 553, 2^2PPP (1) 

605, 2PPP^2 (1) 

3 7, 2P (0) 

1484, 2^^^222 (3) 

2375, P^^2^222 (3) 

23 208, 2P2^P (0) 

164832, 22P^P^^222^ (2) 

4 24, 22^ (0) 

20, 2^2 (1)  

170, 2^^22 (2) 

13928, 2^P^^22P2 (3) 

15388, 2P^^^222P(3) 

24569, P^2^2^^222 (3) 

25541, P^22^^^222 (3) 

28619, PPP^^2^222 (3) 

40049, 2^^^22P^22(3) 

40903, 2^^2^^222P (3) 

24 1776, 2P^22P^ (1) 

2032, 22P^^2P (1) 

4921, 2^2^2^2P (1) 

4925, 2^2^2P^2 (1) 

4961, 2^2P^2^2 (1) 

4965, 2^2P^22^ (1) 

5029, 2^22^^2P (1) 

5285, 2P^2^2^2 (1) 

5289, 2P^2^22^ (1) 

5321, 2P^22^^2 (1) 

5 22, 2PP (0) 

511, 2^^22P (2) 

575, 2P^^22 (2) 

1520, 2^^2^22 (2) 

8980, PP^^22P2P (3) 

33611, P2^P^^22P2 (3) 

41783, 2^P^^22PP2 (3) 

25 204, 2PP2^ (0) 

1804, 2PP^2PP (1) 

13816, 2^^22P2^P (2) 

6 61, 2^2P (1) 

65, 2P^2 (1) 

1532, 2^^22^2 (2) 

1536, 2^^222^ (2) 

1628, 2^2^^22 (2) 

1726, 2P^^22P (2) 

1952, 22^^^22 (2) 

4561, 2^^2^22P (2) 

5161, 2P^^2^22 (2) 

26 46621, 2P^^22P2^P (2) 

7 73, 22^P (0) 

1534, 2^^22PP (2) 

1790, 2PP^^22 (2) 

4885, 2^2^^22P (2) 

5177, 2P^^22^2 (2) 

5181, 2P^^222^ (2) 

5857, 22^^^22P (2) 

7252, P^^22PP2P (3) 

13682, 2^^2^22^2 (2) 

13686, 2^^2^222^ (2) 

27 210, 2P2P^ (0) 

1770, 2P^2P2^ (1) 

1870, 2P2^^2P (1) 

5299, 2P^2P^2P (1) 

13812, 2^^22PP2^ (2) 

8 75, 22P^ (0) 

182, 2^2^2 (1) 

186, 2^22^ (1) 

218, 22^^2 (1) 

4597, 2^^22^2P (2) 

28 4933, 2^2^22^P (1) 

5033, 2^22^P^2 (1) 

5905, 22^^22^P (1) 

5933, 22^P^2^2 (1) 

5937, 22^P^22^ (1) 
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4601, 2^^22P^2 (2) 

4949, 2^2P^^22 (2) 

5179, 2P^^22PP (2) 

5273, 2P^2^^22 (2) 

5371, 2PP^^22P (2) 

9 69, 2P2^ (0) 

196, 2P^2P (1) 

4609, 2^^222^P (2) 

5921, 22^P^^22 (2) 

14656, 2^2^^22PP (2) 

14848, 2^2P^^22P (2) 

15532, 2P^^22^2P (2) 

15536, 2P^^22P^2 (2) 

15820, 2P^2^^22P (2) 

16112, 2PP^^22^2 (2) 

29 13818, 2^^22P2P^ (2) 

17018, 2P2P^^^22 (2) 

10 184, 2^2PP (1) 

200, 2PP^2 (1) 

4611, 2^^222P^ (2) 

6083, 22P^^^22 (2) 

13790, 2^^22^2^2 (2) 

13794, 2^^22^22^ (2) 

13826, 2^^222^^2 (2) 

14750, 2^2^2^^22 (2) 

15074, 2^22^^^22 (2) 

15074, 2^22^^^22 (2) 

30 4963, 2^2P^2PP (1) 

4975, 2^2PP^2P (1) 

5287, 2P^2^2PP (1) 

5303, 2P^2PP^2 (1) 

5407, 2PP^2^2P (1) 

5411, 2PP^2P^2 (1) 

11 67, 2PPP (0) 

4605, 2^^22P2^ (2) 

5597, 2P2^^^22 (2) 

13804, 2^^22P^2P (2) 

15546, 2P^^222P^ (2) 

15884, 2P^2P^^22 (2) 

18250, 22P^^^22P (2} 

41061, 2^^2^222P^ (2) 

43975, 2^2^^222^P (2) 

31 202, 2PPPP (0) 

153168, 2P2P^^^222^ (2) 

12 547, 2^2^2P (1) 

551, 2^2P^2 (1) 

587, 2P^2^2 (1) 

591, 2P^22^ (1) 

655, 22^^2P (1) 

13792, 2^^22^2PP (2) 

13808, 2^^22PP^2 (2) 

14912, 2^2PP^^22 (2) 

32 228, 22PP^ (0) 

1680, 2^22^2^ (1) 

1692, 2^222^^ (1) 

2000, 22^2^^2 (1) 

2108, 222^^^2 (1) 

4935, 2^2^22P^ (1) 

5051, 2^22P^^2 (1) 

5907, 22^^22P^ (1) 

6095, 22P^^2^2 (1) 

6099, 22P^^22^ (1) 

13 4603, 2^^22PPP (2) 

5435, 2PPP^^22 (2) 

48351, 2PP^^222P^(2) 

52719, 22^^^22P2^(2) 

33 1768, 2P^2PPP (1) 

1816, 2PPP^2P (1) 

13810, 2^^22PPPP (2) 

14 559, 2^22^P (1) 

659, 22^P^2 (1) 

34 1678, 2^22^PP (1) 

1982, 22^PP^2 (1) 

13836, 2^^222PP^ (2) 

15 589, 2P^2PP (1) 

601, 2PP^2P (1) 

35 5419, 2PP^22^P (1) 

5935, 22^P^2PP (1) 

16 222, 22^2^ (0) 

234, 222^^ (0) 

561, 2^22P^ (1) 

677, 22P^^2 (1) 

1640, 2^2^2^2 (1) 

1644, 2^2^22^ (1) 

1676, 2^22^^2 (1) 

1964, 22^^2^2 (1) 

1968, 22^^22^ (1) 

36 4929, 2^2^2P2^ (1) 

4997, 2^2P2^^2 (1) 

5609, 2P2^^2^2 (1) 

5613, 2P2^^22^ (1) 

5901, 22^^2P2^ (1) 

14776, 2^2^2P^2P (1) 

14884, 2^2P^2^2P (1) 

14888, 2^2P^2P^2 (1) 

17 220, 22^PP (0) 

41413, 2^^22P^2PP (2) 

41425, 2^^22PP^2P (2) 

37 166288, 22PP^^^22PP (2) 

18 555, 2^2P2^ (1) 38 1684, 2^22P^P (1) 
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623, 2P2^^2 (1) 

1654, 2^2P^2P (1) 

1762, 2P^2^2P (1) 

1766, 2P^2P^2 (1) 

13830, 2^^222^2^ (2) 

13842, 2^^2222^^ (2) 

2036, 22P^P^2 (1) 

 

19 226, 22P^P (0) 

13828, 2^^222^PP (2) 

39 498871, 22PP^^^222^P (2) 

20 1642, 2^2^2PP (1) 

1658, 2^2PP^2 (1) 

1802, 2PP^2^2 (1) 

1806, 2PP^22^ (1) 

1966, 22^^2PP (1) 

40 5421, 2PP^22P^ (1) 

6097, 22P^^2PP (1) 

14764, 2^2^2^2PP (1) 

14780, 2^2^2PP^2 (1) 

14924, 2^2PP^2^2 (1) 

14928, 2^2PP^22^ (1) 

 

Let us call the number of times ‘2’ was raised to the power of an OCRON the ‘power 

level’ or the ‘order’ of the (virtual) OCRON and let us call the OCRON on which the 

operation 2 to the power of … has been performed 𝑛 times the OCRON ‘exposed’ by a 

power level 𝑛. Let us also call the process of 2 raised to the power of OCRON ‘exposure’. 

We call virtual OCRONs with an associated number 𝑛 of exposures 'virtual' OCRONs of 

order 𝑛. From the power laws 

(2𝑎)𝑏 = 2𝑎∗𝑏 𝑎𝑠 𝑤𝑒𝑙𝑙 𝑎𝑠 (22
𝑎
)2
𝑏
= 22

𝑎+𝑏
, the following rules for virtual OCRONs of 

order 1 and 2 can be found: 

- A number 𝒏 that can be represented as a '*'-free OCRON is (simultaneously) 

a virtual OCRON of order 𝟎. This applies to all primes and prime powers if 

the prime number has a '*'-free representation. 

- Each composite number that can be written as a product of different, ‘*’-free 

factors can be represented as a virtual OCRON of order 𝟏 and 𝟐, but not as 

a virtual OCRON of order 𝟎. 

- Prime numbers correspond to either virtual OCRONs of order 0 or 2. 

- Prime powers (with powers ≥  𝟐) can be represented as virtual OCRONs of 

orders 0, 1 and 2. 

- Virtual OCRONs of order 𝟎, 𝟏 𝐨𝐫 𝟐 always start with the symbol "2". 

- From order 𝟑 onwards, virtual OCRONs can also start with the symbol 

"P". 

Theorem: every natural number can be represented as a virtual OCRON of order 

0, 1 or 2. 

Translated into "everyday mathematical language", this theorem reads: 

Any natural number 𝒏 > 𝟏 can be represented by the use only of the number 𝟐, the 

functions Prime() and Log() (to the base 𝟐), as well as raising to a power. 

Note that the arithmetic operations "∗" and "+" are not required! 

The proof is clear, since every natural number can be represented either by a product of 

two or more ‘*’-free factors, or by a sum of two or more ‘*’-free summands, in which we 

want to understand those factors or summands as ‘*’-free prime numbers or powers of 

prime numbers. 
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20.9 MORE UNSOLVED MATHEMATICAL PROBLEMS 

20.9.1 THE EUCLID-MULLIN SEQUENCE 

This sequence is defined very simply: 

Let be 𝑎1 = 2, then 𝑎𝑛 is the smallest prime factor in the decomposition: 

∏𝑎𝑖

𝑛−1

𝑖=1

+ 1 

The first elements of the Euclid-Mullin sequence are: 

2, 3, 7, 43, 13, 53, 5, 6221671, 38709183810571, 139, 2801, 11, 17, 

5471, 52662739, 23003, 30693651606209, 37, 1741, 1313797957, 887, 71, 

7127, 109, 23, 97, 159227, 643679794963466223081509857, 103, 

1079990819, 9539, 3143065813, 29, 3847, 89, 19, 577, 223, 139703, 457, 

9649, 61, 4357, 

87991098722552272708281251793312351581099392851768893748012603709343, 

107, 127, 3313, 

2274326891085895327549849150757748483866714395682604207544149407807612

45893,59, 31, 211 

Mathematica: 

f[1]=2;f[n_]:=f[n]=FactorInteger[Product[f[i], 

{i,1,n-1}]+1][[1,1]];Table[f[n],{n,1,43}] 

 

It is not known whether the Euclid-Mullin sequence runs through all prime numbers. It is 

also not known whether the problem of finding out whether a given prime is contained in 

the sequence belongs to the set of computable problems85. For example, it is still unclear 

whether the number 41 is an element of the Euclid-Mullin sequence. 

 

 
85 https://de.wikipedia.org/wiki/Berechenbarkeit 

https://de.wikipedia.org/wiki/Berechenbarkeit
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20.9.2 ALIQUOT SEQUENCES 

20.9.2.1 GENERAL 

Aliquot sequences are recursively defined sequences defined in the domain of the natural 

numbers: 

𝑛, 𝑠(𝑛), 𝑠(𝑠(𝑛)), 𝑠 (𝑠(𝑠(𝑛))) , …  where 𝑠(𝑛) = 𝜎(𝑛) − 𝑛, 𝑛 ∈ ℕ  (165) 

 

In the process, 𝜎(𝑛) is the sum of divisors function (see Chapter 7.5). (Note: 𝜎(𝑛) is the 

simplified notation of the generalized sigma function 𝜎𝑘(𝑛) for 𝑘 = 1: 𝜎(𝑛) = 𝜎1(𝑛)). 
𝜎(𝑛) counts and sums all the divisors (including 1 and 𝑛 itself). 𝑠(𝑛) sums all divisors, 

but without 𝑛 itself. 𝑠(𝑛) is therefore sometimes called the sum of the proper divisors of 

𝑛. Occasionally, also the term 'numerical content' can be found for 𝑠(𝑛). 

Here are a few examples of aliquot sequences for different starting values: 
 
{4,3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} 

{6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6} 

{7,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} 

{10,8,7,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} 

{11,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} 

{12,16,15,9,4,3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} 

{28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28} 

{220,284,220,284,220,284,220,284,220,284,220,284,220,284,220,284} 

{276,396,696,1104,1872,3770,3790,3050,2716,2772,5964,10164,19628,19684

,22876,26404} 

{496,496,496,496,496,496,496,496,496,496,496,496,496,496,496,496} 

{562,284,220,284,220,284,220,284,220,284,220,284,220,284,220,284} 

{790,650,652,496,496,496,496,496,496,496,496,496,496,496,496,496} 

{12496,14288,15472,14536,14264,12496,14288,15472,14536,14264,12496,142

88,15472,14536,14264,12496} 

(Cycles are marked in red, OE sequences (‘open end’: blue)) 
 

Mathematica: 

 

(*06:*)Join[NestList[DivisorSigma[1,#]-#&,6,25],PadRight[{},0,0]] 

(*10:*)Join[NestList[DivisorSigma[1,#]-#&,10,4],PadRight[{},21,0]] 

(*11:*)Join[NestList[DivisorSigma[1,#]-#&,11,2],PadRight[{},23,0]] 

(*12:*)Join[NestList[DivisorSigma[1,#]-#&,12,7],PadRight[{},18,0]] 

(*28:*)Join[NestList[DivisorSigma[1,#]-#&,28,19],PadRight[{},0,0]] 

(*220:*)Join[NestList[DivisorSigma[1,#]-#&,220,15],PadRight[{},0,0]] 

(*276:*)Join[NestList[DivisorSigma[1,#]-#&,276,15],PadRight[{},0,0]] 

(*496:*)Join[NestList[DivisorSigma[1,#]-#&,496,15],PadRight[{},0,0]] 

(*562:*)Join[NestList[DivisorSigma[1,#]-#&,562,15],PadRight[{},0,0]] 

(*790:*)Join[NestList[DivisorSigma[1,#]-#&,790,15],PadRight[{},0,0]] 

 

The Appendix contains more Mathematica programs for calculating aliquot sequences 

((0). As can be seen from the examples, there are several ways in which an aliquot 

sequence can end: 

 

- prime number, followed by ‘1’ and infinitely many ‘0’ values (this is the ‘normal’ 

end of an aliquot sequence). 
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- Periodic (not 0 ): the cycles known hitherto have the following lengths: 

1,2,4,5,6,8,9,28 (as of Jun. 2016). Numbers with cycle 1 are the perfect numbers 

(already discussed in 4.5). Those with cycle 2 are called ‘amicable’ numbers. 

Numbers in the higher cycles are called 'sociable' numbers. 

- ‘Open End’ (OE). Some sequences grow to infinity without an observable 

'descent'. 

 

If we class the sequences ending in 0 along with those that become periodic, there are 

basically only two types of sequence: those that end periodically and those that never 

terminate. 

 

The conjecture of Catalan (‘Aliquot-Catalan conjecture’) is that every aliquot 

sequence becomes periodic, so that no OE (non-terminating) sequences exist! 

 

Below 1000, there are currently 5 OE sequences and a further 7 sequences that either 

have start values on one of these 5 sequences or end up on one of these 5 sequences (as 

of Jun. 2016). These are the so-called 'Lehmer Five'. Here the starting values of the 12 

sequences below 1000, whose 'destiny' is uncertain: 

 

276 (306,396, 696) 
552 (888) 
564 (780) 
660 (828, 996) 
966 

 
As computers have increased in power in recent years, the number of OE sequences has 

been reduced. Some sequences invade vertiginously high number regions before they 

decide to 'descend' again and end up normally at a prime number. Each natural number, 

taken as a starting value, thus has its own private aliquot sequence. These sequences can 

look very different. They can consist of a single number (if a perfect number is taken as 

the starting value), but they can also consist of thousands of values before the sequence 

ends in a cycle. In these cases, the graph of the corresponding sequence looks more like 

a stock market price than an arithmetical function. The longest sequences calculated to 

date are all OE sequences with lengths of thousands of sequence members. 

 

The longest, currently ‘calculated’ aliquot OE sequence has the starting value 933436 and 

has been calculated up to the term 12516 (as of June 2016)86. The longest sequences found 

so far have lengths of over 70000 sequence values. The largest values achieved by 

sequence members are larger than 10120 (same source). For OE sequences, there are 

'descents' of more than 100 powers of 10 before the sequence rises again, into infinity… 

On the other hand, there are 'ascents' up to 120 orders of magnitude before some 

sequences descend again and end on a prime number. From the data empirically found so 

far, it can be estimated that at present about 1% of all numbers have OE sequences ('open 

end').  

 

 
86 http://aliquot.de/aliquote.htm#records 

http://aliquot.de/aliquote.htm%23records
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Note: most of the information in this chapter is taken from the following Internet pages 

http://www.aliquot.de, http://factordb.com (Markus Tervooren), 

http://christophe.clavier.free.fr/Aliquot/site/Aliquot.html 

 

Here are a few graphs of aliquot sequences. First, the 'Lehmer Five' (open-end sequences 

with starting values below 1000): 

 

  
Figure 144. The first 12 values of the aliquot sequences 276,306,396,696. From the 3rd value on, 
the sequences are identical 

http://www.aliquot.de/
http://factordb.com/
http://christophe.clavier.free.fr/Aliquot/site/Aliquot.html
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Figure 145. Aliquot sequence 276 (OE, the first 600 values) 

Mathematica: 

(*Aliquot 276 OE*)  

n=276;value=n; 

table=Table[value=DivisorSigma[1,value]-

value,{i,1,600}];table=Prepend[table,n]; 

ListLogPlot[table,PlotStyle->Black,Joined->True,ImageSize-

>Large,PlotLabel->{"Aliquot number",n}] 

 

 
Figure 146. Aliquot sequence 276 (OE, the first 1981 values) 
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Figure 147. Aliquot sequence 552 (OE, the first 1126 values) 

 

 

 

Figure 148. Aliquot sequence 564 (OE, the first 3463 values) 
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Figure 149. Aliquot sequence 660 (OE, the first 971 values) 

 

 

Figure 150. Aliquot sequence 966 (OE, the first 948 values) 
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Figure 151. Aliquot sequence 840 (terminates at 601, 746 values) 

 

 

Figure 152. Aliquot sequence 1578 (OE, the first 7555 values)  
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And here are a few plots of terminating aliquot sequences: 

 

Figure 153. Aliquot sequence 921232 (terminates at 11, 6358 values) 

 

Figure 154. Aliquot sequence 2856 (terminates with a cycle of period 28) 

‘Almost perfect’ numbers can also occur within an aliquot sequence, for example in the 

terminating sequence with starting value 840 for indices 139/140 and 140/142: 
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{13938528443323550460883494,13938528465780941432786826,139385284657809

41432786838,23607694429544124013899882,23607694429544124013899894} 

Here the successive sequence members differ only in the 26th position with a difference 

of 12! 

 

20.9.2.2 FAMILIES OF ALIQUOT SEQUENCES 

All aliquot sequences (belonging to different initial values) belong to the same family 

when they terminate in the same manner (i.e. with the same cycle, with the same prime 

number, or with the same OE sequence). A family of aliquot sequences can be represented 

very neatly by a tree structure. Here are a few examples (in which, of course, only the 

lower number range is represented): 

 

Figure 155. Family of aliquot sequences (sequences end with the prime number 3)  

Mathematica program: please contact the author. 
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Figure 156. Family of aliquot sequences (sequences end with the prime number 7)  
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Figure 157. Family of aliquot sequences (sequences end with the prime number 31)  

 

Figure 158. Family of aliquot sequences (sequences end with the prime number 47)  
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20.9.2.3 LENGTHS OF ALIQUOT SEQUENCES 

The following convention applies to the calculation of the lengths of aliquot sequences: 

the sequence always starts with the initial value itself. All subsequent members are 

counted up to (and including) the first repeating value. Since primes have an aliquot sum 

of 1 and the 1 is followed by a value of 0, all primes have a sequence length of 3. Perfect 

numbers have a sequence length of 1 . For OE sequences (admittedly somewhat 

arbitrarily), a sequence length of 10000 was determined. 

Here is a list of the first 300 sequence lengths: 

{2,3,3,4,3,1,3,4,5,5,3,8,3,6,6,7,3,5,3,8,4,7,3,6,2,8,4,1,3,16,3,4,7,9,

4,5,3,8,4,5,3,15,3,6,8,9,3,7,5,4,5,10,3,14,4,6,4,5,3,12,3,10,4,5,4,13,

3,6,5,7,3,10,3,6,6,6,4,12,3,8,6,7,3,7,4,10,8,8,3,11,5,7,5,5,3,10,3,4,5

,6,3,19,3,8,9,7,3,11,3,8,4,10,3,18,4,6,5,11,3,13,9,6,9,7,4,17,3,4,4,7,

3,12,5,8,10,9,3,179,3,6,6,7,3,10,5,7,7,12,3,178,3,13,7,9,4,9,3,8,5,12,

4,5,3,8,10,11,3,176,7,10,4,10,3,17,4,6,5,8,3,53,3,10,5,7,4,16,4,13,4,1

1,3,14,3,7,7,5,3,15,3,5,4,9,4,11,4,8,10,8,4,53,3,12,7,9,6,11,5,11,5,2,

4,177,3,18,9,7,3,9,3,10,8,12,3,176,4,8,4,8,3,12,3,4,10,12,4,16,8,13,9,

12,3,18,5,8,6,7,3,15,9,12,5,9,3,32,4,10,6,9,3,14,3,13,5,7,4,???,3,8,4,

17,3,18,3,2,8,12,6,11,6,13,4,8,3,17,5,8,6,14,4} 

 

In the range of 80 and above, there appear to be strings for which no sequence lengths 

exist. 

 

Figure 159. Aliquot sequence lengths up to n=2500, OE sequences are represented as having a 
length of 10000. 

The Mathematica program with which the lengths were calculated can be found in the 

Appendix. 
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20.9.2.4 END VALUES OF ALIQUOT SEQUENCES 

It is also interesting to consider the values with which aliquot sequences end. Since most 

sequences end with a 0 (with the predecessors of a prime number and a 1), such a graph 

would be extremely tedious if we were literally to take the last term (according to the 

length convention we introduced in the last chapter). So we examine the 'interesting' 

values and use the following convention for the final values: 

In the case of sequences ending with 0, we regard the two places before the prime that 

appears as the end value, and for cyclical endings, we take the first element of the 

terminating cycle as the end value. For OE sequences, we select the value 1 (because we 

don’t know the end…). Here is a list of the first 300 final values: 

{1,2,3,3,5,6,7,7,3,7,11,3,13,7,3,3,17,11,19,7,11,7,23,17,6,3,13,28,29,

3,31,31,3,7,13,17,37,7,17,43,41,3,43,43,3,3,47,41,7,43,11,3,53,3,17,41

,23,31,59,43,61,7,41,41,19,3,67,31,13,43,71,3,73,43,7,41,19,3,79,41,43

,43,83,37,23,3,3,41,89,3,11,41,13,43,6,37,97,73,23,19,101,3,103,41,3,4

1,107,43,109,41,41,43,113,3,29,43,19,7,6,12161,3,41,3,19,31,3,127,127,

47,41,131,43,13,43,3,43,137,59,139,37,11,43,6,3,13,41,43,7,149,59,151,

7,43,43,37,37,157,43,23,43,31,71,163,41,3,3,167,59,7,43,89,43,173,3,73

,37,41,41,179,601,181,43,19,37,43,3,29,7,131,43,191,43,193,19,11,37,19

7,3,199,59,71,41,37,43,47,41,3,43,31,601,211,3,7,41,7,73,17,43,19,220,

31,59,223,41,41,43,227,41,229,41,43,43,233,59,53,37,83,19,239,12161,24

1,157,3,43,97,3,3,43,3,43,251,59,13,41,41,41,257,3,3,43,47,43,263,59,5

9,41,13,43,269,3,271,43,73,37,97,1,277,43,137,41,281,163,283,284,11,43

,7,3,11,43,101,43,293,163,19,37,19,7,37} 

First of all, we notice that most endpoints consist of prime numbers. The few composite 

numbers belong to sequences that end cyclically. It is worth noting that the prime number 

5 appears as a final value only once (namely, at position 5). In the range between 1 and 

300 there is only a single OE sequence (marked by the red ‘1’). 

In the graphic representation, two lines appear that result from point accumulations. The 

curved line: this marks the prime numbers. The straight lines, parallel to the X-axis at the 

values 41, 43 and 59: here clearly an inexplicable accumulation can be seen. 

The OE sequences all appear in a straight line at the value 1. On average, almost 8% of 

all aliquot sequences end at 43, about 5% at value 59, and 5% at 41. Other values such as 

5 or 28 appear only once. 
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Figure 160. End values of aliquot sequences for initial values up to 2500 

One may wonder which initial starting values result in cyclical end values (including the 

perfect numbers with cycle length 1 ). If these initial values are simply plotted in 

ascending order, then you can see that their 'density' remains constant on average because 

the slope is linear with a good approximation (the equation for the accompanying straight 

line is: 𝑓(𝑥) = 14.512 + 40.8404 𝑥). 

 

Figure 161. Initial values of aliquot sequences that terminate with a cycle 
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20.9.2.5 DIFFERENCES AND QUOTIENTS OF ALIQUOT SEQUENCES 

The following observations were illustrated using the example of the aliquot sequence 

with the starting value 840. However, they generally apply in the same way for most other 

aliquot sequences 

If we consider the differences of two successive sequence members, it is noticeable that 

in the majority of cases these are almost of the same order of magnitude as the sequence 

members themselves. An exception are the 'almost perfect' numbers (see Chapter 

20.9.2.1). Moreover, a plot of the differences shows a certain 'form invariance' compared 

to the original aliquot sequence 

This form invariance also persists in higher order differences (tested by the author to 

difference orders of over 20). In the plots the logarithmic values of the differences were 

taken. The form invariance becomes even more visible when the negative differences, 

"upwards folded" (i.e. the absolute values) are taken: 

 

Figure 162. Aliquot sequence: log differences for initial value n= 840, preserving sign  

Mathematica program: please contact the author. 
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Figure 163. Aliquot sequence: log differences for initial value n= 840, absolute values  

It is even more interesting if, instead of considering the logarithmic values of the differences, we 

look at the differences of the logarithmic values, which correspond to the quotient of two 

successive values. There are accumulation points which are approximately at the values 

ln (
1

2
) , ln (

3

4
) , 0, ln (

5

4
)  and 1, which correspond to the quotient values of 

1

2
,
3

4
, 1,

5

4
 and 𝑒. 

Furthermore, it can be observed that the 'ascents' within the sequences are on average 

steeper than the 'descents'. There are no distinct accumulation points for the gradients in 

the ascent, but an upper bound of 1 (or e) (apart from occasional small slip-ups in OE 

sequences, which are barely over 1). On descent we have a lower bound of −0.693 (or 

0.5). 

This means that the terms of aliquot sequences cannot grow faster than with a factor 𝑒, or 

become smaller by a factor of 0.5. As a matter of fact, the descent is always slower than 

the ascent, and yet almost all aliquot sequences redescend and come to rest on small 

values. Note: these are all purely empirical considerations, without claim to strict 

mathematical validity. 
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Figure 164. Aliquot sequence: differences of log values for initial value n= 840  

 

Figure 165. Aliquot sequence: differences of log values for initial value n= 921232  

Mathematica:  

(Program can be found in the Appendix) 
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Figure 166. Aliquot sequence: differences of log values for initial value n= 564 (OE)  
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20.9.3 FACTORIZATION OF INTEGER NUMBERS 

Mathematica can be used to factorize relatively large numbers: 

For example, the following 68-digit number 
CenterDot@@(Superscript@@@ 

FactorInteger[24284712165828060817808704394685584572191120513988451223045457718339]) 

returns the following prime factor after 1.5 seconds of computational time (on a 2.6 

GHz Quad Core Intel PC): 

299962242758332 ⋅  299962242758513 

There are any number of methods using Mathematica to factorize numbers (whether or 

not they are very efficient is another question), for example: 

n=1037; 

Solve[x*y== n&&x>1&&x<n&&y>1&&y<n,{x,y},Integers] 

or: 
FindInstance[x*y== n&&x>1&&x<n&&y>1&&y<n,{x,y},Integers] 

yields: 
{{x->17,y->61}} 

 

 

 

20.9.3.1 IMPORTANT FACTORIZATION METHODS 

The most important factorization methods currently available (as of Feb. 2016) are listed 

here without explaining their algorithms or implementations. In practice, several methods 

are used depending on the number range. Several algorithms are usually combined with 

one another. Thus, at the beginning of a factorization process, a test with comparatively 

small factors (trial division) usually takes place in order to find small factors quickly 

before the "heavy artillery" is launched, such as the ECM method or the "number field 

sieve". 

Factorization methods: 

- Division by trial (finds out small factors) 

- Fermat’s method 

- Pollard ‘p-1’ method  

- Pollard ‘rho’ method (searches for 𝑥 ≡ 𝑦 (𝑚𝑜𝑑 𝑝) in a pseudorandom number 

sequence) 

- Williams’s ‘p+1’ method 

- Pomerance’s method 

- Continued fractions methods 

- ECM method using elliptic curves 

- Shank’s SQUFOF method  

- Quadratic sieve method 

- Number field sieve 
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These factorization methods are documented extensively on many Internet web sites, so 

we will not discuss them here. 

Because of its simplicity and beauty, Fermat's method is briefly described here: 

Let n be the number to be factored. The algorithm works only for odd numbers 𝑛. We test 

the expression (⌈√𝑛⌉ + 𝑖)
2
− 𝑛 (by incrementing 𝑖, starting from 𝑖 =  0) until it gives a 

squared number 𝑦2: 

(⌈√𝑛⌉ + 𝑖)
2
− 𝑛 = 𝑦2. With 𝑥 = ⌈√𝑛⌉ + 𝑖 this yields: 𝑥2 − 𝑛 = 𝑦2, or 

 𝑛 = (𝑥 + 𝑦)(𝑥 − 𝑦). Thus, we have found two factors of 𝑛. 

Here is an example: n=1037. Then we have ⌈√1037⌉ = 33. We then get the following 

sequence: 

(33 + 0)2 − 1037 = 52 

(33 + 1)2 − 1037 = 119 

(33 + 2)2 − 1037 = 188 

(33 + 3)2 − 1037 = 259 

(33 + 4)2 − 1037 = 332 

(33 + 5)2 − 1037 = 407 

(33 + 6)2 − 1037 = 484 (= 22 ∗ 22) 
 

Thereby 𝒙 has a value of 𝟑𝟗 and 𝒚 the value 𝟐𝟐 and thus we have both factors 𝒑 =
𝟑𝟗 + 𝟐𝟐 = 𝟔𝟏 and 𝒒 = 𝟑𝟗 − 𝟐𝟐 = 𝟏𝟕. 𝟏𝟎𝟑𝟕 = 𝟏𝟕 ∗ 𝟔𝟏. 

 
Mathematica: 

n=17*61;sqN=Ceiling[Sqrt[n]];value=2; 

For[i=0,i<n&&IntegerQ[Sqrt[value]]==False,i++, 

Print[i,"->",value=(sqN+i)^2-n]];i--; 

y=Sqrt[value]; x=sqN+i; 

p=x+y; q=x-y 

Print["factors: ",p,"*",q]; 

 

The algorithm can be accelerated by avoiding the repeated squaring and computing 

(𝑠 + 𝑖)2 recursively from the predecessor term: (𝑠 + 1)2 − 𝑛 = 𝑠2 + 2𝑠 + 1 − 𝑛. The 

test of whether 𝑦2 is a square can also be accelerated by testing the last two digits of the 

number (there are only 22 of 100 different possibilities for the last two digits for any 

number of squares. 

The runtime behaviour of this algorithm is good (~√𝑛)) if both factors are approximately 

of equal size. However, it becomes bad when one of the factors is very small (e.g. 3). The 

iteration is always finite, i.e. it will always end at a square. However, for primes, many 

iterations occur so that this method is unsuitable as a prime number test. 

The bad run time for factors of different sizes can be circumvented by finding a suitable 

factor 𝑘 such that the algorithm is applied to 𝑘 ⋅ 𝑛, finding two factors closer together. 
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Such an algorithm is much more efficient than the Fermat algorithm and is known as the 

'Lehman method'87. 

 

20.9.3.2 OTHER FACTORIZATION METHODS 

The author would like to present a few unconventional methods, regardless of their 

practical applicability. 

The sigma phi method 

Let 𝑛 be the product of exactly two different prime numbers: 𝑛 = 𝑝𝑞.  

Then:  

𝜎(𝑛) = (𝑝 + 1)(𝑞 + 1) = 𝑛 + 1 + (𝑝 + 𝑞) 

𝜑(𝑛) = (𝑝 − 1)(𝑞 − 1) = 𝑛 + 1 − (𝑝 + 𝑞) 

 

𝑝 and 𝑞 can be calculated thus: 

𝑝 =
(𝜎(𝑛) − 𝜑(𝑛))

4
− √[

(𝜎(𝑛) − 𝜑(𝑛))

4
]

2

− [
(𝜎(𝑛) + 𝜑(𝑛))

2
] + 1 (166) 

 

𝑞 =
(𝜎(𝑛) − 𝜑(𝑛))

4
+ √[

(𝜎(𝑛) − 𝜑(𝑛))

4
]

2

− [
(𝜎(𝑛) + 𝜑(𝑛))

2
] + 1 (167) 

 

Example: 𝑛 = 1037 

𝜎(𝑛): 1116,𝜑(𝑛): 960,
(𝜎(𝑛)−𝜑(𝑛))

4
: 39 yields 1037 = 17 ∗ 61 

 

Example: 𝑛 = 519920418755535776857 

𝜎(𝑛): 519920418801139303860,𝜑(𝑛): 519920418709932249856,  
(𝜎(𝑛)−𝜑(𝑛))

4
: 22801763501 yields: 

 519920418755535776857 = 22801763489 ∗ 22801763513 
Mathematica: 

n=519920418755535776857; 

sigmaN=DivisorSigma[1,n]; eulerP=EulerPhi[n]; 

sum=sigmaN+eulerP; dif=sigmaN-eulerP; sqTerm=(dif/4)^2-sum/2+1; 

p=dif/4-Sqrt[sqTerm] 

q=dif/4+Sqrt[sqTerm] 

 

Using this method, however, the problem of the factorization of 𝑛  has only been 

‘transformed’ to the determination 𝜎(𝑛) and 𝜑(𝑛) , which again implies a similar 

complexity. 

 
87 Richard Crandall, Carl Pomerance: Prime Numbers. A Computational Perspective, p. 191 
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A ‘crazy’ method (analytically) 

We consider the function of two variables 

productF(𝑥, 𝑦) = 𝑥 ∗ 𝑦 − 𝑛 

and examine for which values x and y this function assumes a value of 0. These values 

all lie on a ‘zero line’ and, so to speak, represent all 'real' factors of 𝑛 (in this case, a 

hyperbole). If we extract the integer (𝑥, 𝑦) −values from this ‘zero line’, then we have 

factorized 𝑛. 

Example:  
productF(𝑥, 𝑦) = 𝑥 ∗ 𝑦 − 15 

The ‘zero line’ as a contour plot looks like this: 

 

The integer values of the zero line lie, as can be seen, at the points(3,5) and (5,3). 

Mathematica: 

testF[m_]:=If[val=Abs[Round[{m}]-{m}];val[[1]][[1]]<10^(-

5)&&val[[1]][[2]]<10^(-5),True,False]; 

primeIndex=2; Prime[primeIndex] 

Prime[primeIndex+1] 

n=Prime[primeIndex]*Prime[primeIndex+1] 

sqN=Round[Sqrt[n]+1]; 

productF[x_,y_]:=((x)*(y)-n); 

(*Find Zero-Line:*) 

ptsxy=ContourPlot[(productF[x,y]==0),{x,2,8},{y,2,8},MaxRecursion->4]; 

Show[ptsxy,ListPlot[{{3,5},{5,3}}],ImageSize->{708,425},AspectRatio->Full] 

ptsxy1=Cases[Normal@ContourPlot[productF[x,y]==0,{x,2,8},{y,2,8}, 

MaxRecursion->4],Line[{x__}]:>x,Infinity] 
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Round[Select[ptsxy1,testF]] 

Sort[DeleteDuplicates[Round[Select[ptsxy1,testF]]]] 

 

Which yields: 

{{3,5},{5,3}} 

An analytic method 

We start again with 𝑥 ∗ 𝑦 = 𝑛 , where 𝑥, 𝑦 ∈ ℝ and 𝑛 ∈ ℕ  and search for integer 

solutions of 𝑥, 𝑦 . This represents an equation with two unknown variables, with the 

boundary condition that x, y must be integer values. To solve equations with two 

unknowns, we need two equations. The question is now: how do we get a second equation 

expressing the boundary condition of being an integer? There are more possibilities for 

this, e.g. : 

 

sin (𝜋 (2𝑥 −
1

2
)) + sin (𝜋 (2𝑦 −

1

2
)) + 2 = 0 (168) 

 

𝑥 ⋅ 𝑦 = 𝑛 (169) 
 

Equations (168) and (169) describe a nonlinear equation system of two equations with 

two unknowns. The real solution(s) of this system of equations yield the prime factors of 

our number 𝑛. However, the solution is difficult and not possible with simple methods. 

(169) can be solved for 𝑦 and inserted into (168). 

If we then apply a power function (𝑥)
1

3 (to move the ‘near-solutions' a little farther away 

from the X-axis), we get the following function: 

fakFunc(x, n) = (sin (𝜋 (2𝑥 −
1

2
)) + sin (𝜋 (2

𝑛

𝑥
−
1

2
)) + 2 )

1
3

 (170) 

 

The real zeros of fakFunc(x) give the complete list of all possible divisors of 𝑛. 

Here is an example with 𝑛 = 1037: 
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Figure 167. fakFunc(𝑥, 1037) having zeros at the prime factors 17 and 61 

Mathematica: 

n=1037; 

intFunc[x_,y_]:=(Sin[Pi*(2x-1/2)]+Sin[Pi*(2y-1/2)])+2; 

Show[Plot[(intFunc[x,n/x])^(1/3),{x,3,62},MaxRecursion->15,AxesOrigin-

>{0,0}],ListPlot[{{17,0},{61,0}},PlotStyle->Red]] 

 

The function intFunc(𝑥, 𝑦), Formula (168), by the way, looks like an egg tray: 

 
Figure 168. Function f(x,y) has zeros for each integer (x-y) point 
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Figure 169. Same as above, but as a contour plot  

Mathematica: 

ContourPlot [intFunc[x,y],{x,0,8},{y,0,8},ImageSize-

>Large]Plot3D[intFunc[x,y],{x,0,8},{y,0,8},ImageSize->Large] 

 

20.10 TABLES 

20.10.1 NUMBER OF PRIMES UP TO A GIVEN LIMIT N: 𝜋(N) 

Exact values of 𝜋(𝑥) for x to 1027 are available in the “Online Encyclopedia of Integer 
Sequences” (http://oeis.org). e.g.: A006880: 

Table 29. Comparison of the exact 𝜋 − function with the Riemann function (rounded) 

n   𝜋(10𝑛) Riemann(10𝑛) Riemann(10𝑛)- 𝜋(10𝑛)  
0  0  0 0  

1  4  5 1  

2  25  26 1  

3  168  168 0  

http://oeis.org/
https://oeis.org/A006880
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4  1229  1227 2  

5  9592  9587 -5  

6  78498  78527 29  

7  664579  664667 88  

8  5761455  5761552 97  

9  50847534  50847455 -79  

10  455052511  455050683 -1828  

11  4118054813  4118052495 -2318  

12  37607912018  37607910542 -1476  

13  346065536839  346065531066 -5773  

14  3204941750802  3204941731602 -19200  

15  29844570422669  29844570495887 73218  

16  279238341033925  279238341360977 327052  

17  2623557157654233  2623557157055978 -598255  

18  24739954287740860  24739954284239494 -3501366  

19  234057667276344607  234057667300228940 23884333  

20  2220819602560918840  2220819602556027015 -4891825  

21  21127269486018731928  21127269485932299724 -86432204  

22  201467286689315906290  201467286689188773625 -127132665  

23  1925320391606803968923  1925320391607837268776 1033299853  

24  18435599767349200867866  18435599767347541878147 -1658989719  

25  176846309399143769411680  176846309399141934626966 -1834784714  

26  1699246750872437141327603  1699246750872419991992147 -17149335456  

27  16352460426841680446427399 16352460426841662910939465 -17535487934  

28  157589269275973410412739598    

29  1520698109714272166094258063    

 

 

 

Table 30. Comparison of the exact 𝜋− function with Riema𝑛𝑛’𝑠 exact formula 𝜋∗(𝑛) (see (132), sum 

over 10000 zeros, rounded 

n   𝜋(10𝑛) 𝜋∗(10𝑛) 𝜋∗(10𝑛)- 𝜋(10𝑛)  
0  0  - -  

1  4  4 0  

2  25  25 0  

3  168  168 0  

4  1229  1229 0  

5  9592  9592 0  

6  78498  78498 0  

7  664579  664579 0  

8  5761455  5761462 7  

9  50847534  50847519 -15  

10  455052511  455052528 17  

11  4118054813  4118054697 -116  

12  37607912018  37607911016 -1002  
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13  346065536839  346065537034 195  

14  3204941750802  3204941747414 -3388  

15  29844570422669  29844570424541 1872  

16  279238341033925  279238341008610 -25315  

17  2623557157654233  2623557157681368 27135  

18  24739954287740860  24739954288134940 394080  

19  234057667276344607  234057667277476288 1131681  

20  2220819602560918840  2220819602559672832 -1246008  

21  21127269486018731928  21127269486003990528 -14741400  

22  201467286689315906290  201467286689365917696 50011406  

23  1925320391606803968923  1925320391606731276288 -72692635  

24  18435599767349200867866  18435599767349571354624 370486758  

25  176846309399143769411680  176846309399143087341568 -682070112  

26  1699246750872437141327603  1699246750872436043939840 -1097387763  

27  16352460426841680446427399 16352460426841662628560896 -17817866503  

28  157589269275973410412739598    

29  1520698109714272166094258063    

 

Table 31. Comparison of the exact 𝜋 -function with Riemann’s exact formula 𝜋∗(𝑛), sum over 

100000 zeros, rounded 

n   𝜋(10𝑛) 𝜋∗(10𝑛) 𝜋∗(10𝑛)- 𝜋(10𝑛)  
0  0  - -  

1  4  4 0  

2  25  25 0  

3  168  168 0  

4  1229  1229 0  

5  9592  9592 0  

6  78498  78498 0  

7  664579  664579 0  

8  5761455  5761457 2  

9  50847534  50847536 2  

10  455052511  455052532 21  

11  4118054813  4118054886 73  

12  37607912018  37607911595 -423  

13  346065536839  346065537866 1027  

14  3204941750802  3204941749206 -1596  

15  29844570422669  29844570413033 -9636  

16  279238341033925  279238341037530 3605  

17  2623557157654233  2623557157660142 5909  

18  24739954287740860  24739954287711076 -29784  

19  234057667276344607  234057667276885600 540993  

20  2220819602560918840  2220819602559328000 -1590840  

21  21127269486018731928  21127269486015279104 -3452824  

22  201467286689315906290  201467286689324924928 9018638  

23  1925320391606803968923  1925320391606799433728 -4535195  

24  18435599767349200867866  18435599767349154021376 -46846490  
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25  176846309399143769411680  176846309399143557103616 -212308064  

26  1699246750872437141327603  1699246750872436312375296 -828952307  

27  16352460426841680446427399 16352460426841660481077248 -19965350151  

28  157589269275973410412739598    

29  1520698109714272166094258063    

 

Table 32. Comparison of the exact 𝜋 -function with Riemann’s exact formula 𝜋∗(𝑛), sum over 1m 

zeros, rounded 

n   𝜋(10𝑛) 𝜋∗(10𝑛) 𝜋∗(10𝑛)- 𝜋(10𝑛)  
0  0  - -  

1  4  4 0  

2  25  25 0  

3  168  168 0  

4  1229  1229 0  

5  9592  9592 0  

6  78498  78498 0  

7  664579  664579 0  

8  5761455  5761456 1  

9  50847534  50847536 2  

10  455052511     

11  4118054813     

12  37607912018     

13  346065536839     

14  3204941750802     

15  29844570422669     

16  279238341033925     

17  2623557157654233     

18  24739954287740860     

19  234057667276344607     

20  2220819602560918840     

21  21127269486018731928     

22  201467286689315906290     

23  1925320391606803968923     

24  18435599767349200867866  18435599767349269364736 68496870  

25  176846309399143769411680  176846309399144194637824 425226144  

26  1699246750872437141327603  1699246750872437117681664 23645939  

27  16352460426841680446427399 ??? ???  

28  157589269275973410412739598    

29  1520698109714272166094258063    

 

The equivalence of the analytically calculated value with the exact value 𝜋(1026) is 

remarkable: the value is exact up to 17 decimal digits! Nevertheless, the result is only 

three decimal places better compared to the 'normal' Riemann function (14 digits 

accuracy, even though the summation terms of the first 1,000,000 zeros of the zeta 

function were evaluated). 
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20.10.2 MERSENNE PRIME NUMBERS 

This table contains all the exponents currently known (as of Dec. 2020). 

No. 
p 

(exponent) 
Digits 
in Mp 

 Year Discovered by  

1 2 1  ---- ----  

2 3 1  ---- ----  

3 5 2  ---- ----  

4 7 3  ---- ----  

5 13 4  1456 anonymous  

6 17 6  1588 Cataldi  

7 19 6  1588 Cataldi  

8 31 10  1772 Euler  

9 61 19  1883 Pervushin  

10 89 27  1911 Powers  

11 107 33  1914 Powers  

12 127 39  1876 Lucas  

13 521 157  1952 Robinson  

14 607 183  1952 Robinson  

15 1279 386  1952 Robinson  

16 2203 664  1952 Robinson  

17 2281 687  1952 Robinson  

18 3217 969  1957 Riesel  

19 4253 1281  1961 Hurwitz  

20 4423 1332  1961 Hurwitz  

21 9689 2917  1963 Gillies  

22 9941 2993  1963 Gillies  

23 11213 3376  1963 Gillies  

24 19937 6002  1971 Tuckerman  

25 21701 6533  1978 Noll & Nickel  

26 23209 6987  1979 Noll  

27 44497 13395  1979 Nelson & Slowinski  

28 86243 25962  1982 Slowinski  

29 110503 33265  1988 Colquitt & Welsh  
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30 132049 39751  1983 Slowinski  

31 216091 65050  1985 Slowinski  

32 756839 227832  1992 Slowinski & Gage et al.   

33 859433 258716  1994 Slowinski & Gage  

34 1257787 378632  1996 Slowinski & Gage  

35 1398269 420921  1996 
Armengaud, Woltman,  
et al. (GIMPS) 

 

36 2976221 895932  1997 
Spence, Woltman, 
et al. (GIMPS) 

 

37 3021377 909526  1998 
Clarkson, Woltman, Kurowski 
et al. (GIMPS, PrimeNet) 

 

38 6972593 2098960  1999 
Hajratwala, Woltman, Kurowski 
et al. (GIMPS, PrimeNet) 

 

39 13466917 4053946  2001 
Cameron, Woltman, Kurowski 
et al. (GIMPS, PrimeNet) 

 

40 20996011 6320430  2003 
Shafer, Woltman, Kurowski 
et al. (GIMPS, PrimeNet) 

 

41 24036583 7235733  2004 
Findley, Woltman, Kurowski 
et al. (GIMPS, PrimeNet) 

 

42 25964951 7816230   2005 
Nowak, Woltman, Kurowski 
et al. (GIMPS, PrimeNet) 

 

43 30402457  9152052   2005 
Cooper, Boone, Woltman, Kurowski 
et al. (GIMPS, PrimeNet) 

 

44 32582657 9808358  2006 
Cooper, Boone, Woltman, Kurowski 
et al. (GIMPS, PrimeNet) 

 

45 37156667 11185272  2008 
Elvenich, Woltman, Kurowski 
et al. (GIMPS, PrimeNet) 

 

46 42643801  12837064  2009 
Strindmo, Woltman, Kurowski 
et al. (GIMPS, PrimeNet) 

 

47 43112609 12978189  2008 
Smith, Woltman, Kurowski 
et al. (GIMPS, PrimeNet) 

 

48 57885161 17425170  2013 
Cooper, Woltman, Kurowski 
et al. (GIMPS, PrimeNet) 

 

?? 74207281 22338618  2016 
Cooper, Woltman (prime95), 
Kurowski & Blosser (PrimeNet), 
GIMPS et al 

 

?? 77232917 23249425  2017 GIMPS / Jon Pace (Prime95)  

 
?? 

 
82589933 

 
24862048 

 
 
2018 

  
GIMPS / Patrick Laroche (Prime95) 

 

 

20.10.3 FERMAT PRIME NUMBERS 

At present, only five Fermat primes are known. These are: 

𝟑, 𝟓, 𝟏𝟕, 𝟐𝟓𝟕, 𝟔𝟓𝟓𝟑𝟕 
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20.10.4 DEGENERATION OF TYPE 4 OCRONS AND EOCRONS 

Table 33. The first 23 type 4 OCRONs, GOCRONs (GC) as well as the corresponding degenerations  

n GC( “*”=0, “P”=1, “2”=2, “^”=3), 

OCRON 

n GC( “*”=0, “P”=1, “2”=2, “^”=3), 

OCRON 
2 2 2 13 609 2P2*P 

657 22P*P 

3 9 2P 14 2584 22*P2* 

2692 222*P* 

2740 222^P* 

2776 22^P2* 

4 40 22* 

43 22^ 

15 2404 2PP2P* 

2452 2P2PP* 

5 37 2PP 16 651 22*2^ 

675 222*^ 

687 222^^ 

699 22^2^ 

2680 22P^2* 

2716 222P^* 

10376 22*2*2* 

10400 22*22** 

10412 22*22^* 

10760 222**2* 

10784 222*2** 

10880 2222*** 

10928 2222^** 

10952 222^*2* 

10976 222^2** 

11144 22^2*2* 

11168 22^22** 

11180 22^22^* 

6 152 2P2* 

164 22P* 

17 645 22*PP 

693 22^PP 

7 161 22*P 

173 22^P 

18 2488 2P2^2* 

2668 22P2^* 

9764 2P2*2P* 

9800 2P2P*2* 

9824 2P2P2** 

9872 2P22P** 

10532 22P*2P* 

10640 22P2P** 

8 167 22P^ 

648 22*2* 

672 222** 

684 222^* 

696 22^2* 

19 669 22P^P 

2593 22*2*P 

2689 222**P 

2737 222^*P 

2785 22^2*P 

9 155 2P2^ 

612 2P2P* 

20 9608 2PP2*2* 

9632 2PP22** 

9644 2PP22^* 

10388 22*2PP* 

10568 22PP*2* 
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10592 22PP2** 

10832 222PP** 

11156 22^2PP* 

10 600 2PP2* 

660 22PP* 

21 9860 2P22*P* 

9908 2P22^P* 

10340 22*P2P* 

11108 22^P2P* 

11 149 2PPP 22 2392 2PPP2* 

2644 22PPP* 

12 2440 2P2*2* 

2464 2P22** 

2476 2P22^* 

2596 22*2P* 

2632 22P*2* 

2656 22P2** 

2704 222P** 

2788 22^2P* 

23 621 2P2^P 

2449 2P2P*P 

 

 

Table 34. Number of degenerations for EOCRONs of type 4  

n Degener. n Degener. n Degener. n Degener. 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

- 

- 

1 

4 

1 

5 

3 

16 

3 

5 

1 

26 

3 

13 

4 

68 

3 

23 

10 

26 

10 

5 

2 

134 

3 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

13 

10 

63 

3 

36 

1 

271 

4 

13 

10 

159 

13 

40 

10 

134 

3 

85 

8 

26 

19 

10 

2 

693 

15 

23 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

10 

63 

39 

106 

4 

311 

30 

13 

3 

260 

11 

5 

45 

1139 

10 

36 

10 

36 

8 

85 

13 

997 

5 

55 

19 

76 

77 

78 

79 

80 

81 

82 

83 

84 

85 

86 

87 

88 

89 

90 

91 

92 

93 

94 

95 

96 

97 

98 

99 

100 

185 

10 

85 

3 

693 

39 

13 

2 

594 

10 

32 

10 

134 

61 

231 

24 

52 

4 

10 

30 

3508 

2 

111 

19 

159 

 

The degeneration of EOCRONs of type 4 is significantly larger than for 'normal' 

OCRONs of type 4 (see Table 20). 
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20.10.5 ZEROS OF RAMANUJAN’S TAU L FUNCTION 

Table 35. The first 128 zeros or Ramanujan’ s tau L function along the critical line  Re(𝑠) = 6  

n n-th Zero (imaginary part) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

9.222379399921084797142611932940781116486 

13.907549861392134005200205137953162193298 

17.44277697823447326186396821867674589157 

19.65651314195496013326192041859030723572 

22.33610363720986669022749993018805980682 

25.27463654811236537511831556912511587143 

26.80439115835040198021488322410732507706 

28.83168262418687532999683753587305545807 

31.17820949836026045431935926899313926697 

32.77487538223120822067357948981225490570 

35.19699584121007518433543737046420574188 

36.74146297671030936271563405171036720276 

37.75391597562427392631434486247599124908 

40.21903437422132299161603441461920738220 

41.73049228930784693147870711982250213623 

43.59174123557517077642842195928096771240 

45.04007921377559853226557606831192970276 

46.19731875314330693527153925970196723938 

48.35905247802367057374794967472553253174 

49.27605353655818021252343896776437759399 

51.15656028143634870275491266511380672455 

53.06671423542580612320307409390807151794 

54.09995263156227451872837264090776443481 

55.21778745348462535957878571934998035431 

56.71529404472536839421081822365522384644 

58.58016100791407154702028492465615272522 

59.78593800331714191997889429330825805664 

61.13672295792679989290263620205223560333 

62.66499232630715710001823026686906814575 

64.08664571892624906013224972411990165710 

64.84864127982825721119297668337821960449 

66.49476926718958225137612316757440567017 

67.93860977475046070139796938747167587280 

69.04339787488993351871613413095474243164 

71.11465341424647590429231058806180953979 

71.74750419616562169267126591876149177551 

72.81406066758940198724303627386689186096 

74.09582544001794701671315124258399009705 

75.77216168976411836410989053547382354736 

77.10183189348964560849708504974842071533 

77.68461125026033187168650329113006591797 

79.79293909123566663765814155340194702148 

80.56019206809750698994321282953023910522 

82.00757620451852858423080760985612869263 

82.84252583957207605180883547291159629822 

83.97564035576498042701132362708449363708 

85.46221814858006382564781233668327331543 
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48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

76 

77 

78 

79 

80 

81 

82 

83 

84 

85 

86 

87 

88 

89 

90 

91 

92 

93 

94 

95 

96 

97 

98 

99 

100 

101 

86.75597218825528500474320026114583015442 

88.07513099425673885889409575611352920532 

89.02289034074360074555443134158849716187 

90.45103289616260155980853596702218055725 

91.11271853147249544235819485038518905640 

92.44292549472127973331225803121924400330 

93.76912394743676770758611382916569709778 

95.13807853977348827356763649731874465942 

95.62492107704515831301250727847218513489 

97.34104088984686597996187629178166389465 

98.70980408818076057286816649138927459717 

99.74664890030413744170800782740116119385 

100.22461499968198950227815657854080200195 

101.34359353371037570923363091424107551575 

103.16663591563629154279624344781041145325 

103.81733899744642712903441861271858215332 

105.22181333799052538324758643284440040588 

106.29382213420061020769935566931962966919 

107.42670755392653347826126264408230781555 

108.47543790163686594496539328247308731079 

109.39169607602677558588766260072588920593 

110.70966268400202636712492676451802253723 

111.53473540163911081890546483919024467468 

112.75715359897023404300853144377470016479 

113.84343404772059216156776528805494308472 

115.06276556053481385788472834974527359009 

116.46348398369597987311863107606768608093 

117.11654084727238966934237396344542503357 

118.14687073684822848917974624782800674438 

119.08216779664660123216890497133135795593 

119.99454209523629799605259904637932777405 

121.78633067852094029603904346004128456116 

122.55731782502655846656125504523515701294 

123.21241716312161429414118174463510513306 

124.60624049116798062186717288568615913391 

125.94289344930038510028680320829153060913 

126.75939204586923381157248513773083686829 

127.55580316015350206271250499412417411804 

128.62383894451065202702011447399854660034 

129.60342208412549780405242927372455596924 

130.94859240739617689541773870587348937988 

131.70819904811898481966636609286069869995 

132.96854278614409849978983402252197265625 

134.34729668877156427697627805173397064209 

135.07869588873938937467755749821662902832 

135.55289998752846258867066353559494018555 

137.09033471100445922274957410991191864014 

137.70022292031720212435175199061632156372 

139.28400855168445104936836287379264831543 

139.93658439005704963165044318884611129761 

140.89653322681010649830568581819534301758 

142.1411519890185388703685021027922630310 

143.0835552634784448855498339980840682983 

144.3547263694031244085635989904403686523 
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102 

103 

104 

105 

106 

107 

108 

109 

110 

111 

112 

113 

114 

115 

116 

117 

118 

119 

120 

121 

122 

123 

124 

125 

126 

127 

128 

145.1653120064068502870213706046342849731 

146.1487705718024301404511788859963417053 

146.4097883646259958823065971955657005310 

148.1177541226128084872470935806632041931 

149.0412678815713718449842417612671852112 

150.2750742969780901603371603414416313171 

150.9064237539794532949599670246243476868 

152.1344343784803641028702259063720703125 

153.1151471940314081621181685477495193481 

154.0518290966241181649820646271109580994 

154.7953122295758987547742435708642005920 

155.7320793911374607887410093098878860474 

157.0957831922944762936822371557354927063 

157.9127528865146530279162107035517692566 

158.6608139225808713490550871938467025757 

159.6686139103367452207749010995030403137 

161.3063702811864743580372305586934089661 

161.8503586051299976134032476693391799927 

162.8714549225416021727141924202442169189 

163.5474941087671822970150969922542572021 

164.3389052284337310538830934092402458191 

165.6101228957916760009538847953081130981 

166.5807970056847295836632838472723960876 

167.6436347091075731441378593444824218750 

168.6591247847260888192977290600538253784 

169.2457741065447009987110504880547523499 

170.5979320487521135873976163566112518311 

Mathematica program: please contact the author. 

20.10.6 THE ABC CONJECTURE: FIT PARAMETER AND C3 VALUES OF THE 
PLANE EQUATIONS FOR DIFFERENT GÖDELIZATION METHODS 

Table 36. c=30011. Fit parameter and  𝑐3 of the plane equations for  𝑀𝑎𝑏𝑐 (type M2GOCRON4) 

for different assignments of Gödel symbols  

C 𝒄𝟑 Code table: symbols/values Max. value Standard error t-statistics 

30011 3.50329 1:{*,P,2,^},{0,1,2,3} 31.5607 0.00147067 2382.1 

30011 3.31794 2:{*,P,2,^},{0,1,3,2} 31.8085 0.00203153 1633.22 

30011 3.4018 3:{*,P,2,^},{0,2,1,3} 31.1111 0.00109664 3102.03 

30011 3.01535 4:{*,P,2,^},{0,2,3,1} 31.7433 0.000640746 4706. 

30011 3.1857 5:{*,P,2,^},{0,3,1,2} 30.9755 0.00200754 1586.86 

30011 2.97014 6:{*,P,2,^},{0,3,2,1} 31.3842 0.000996648 2980.14 

30011 4.00661 9:{*,P,2,^},{1,2,0,3} 30.2574 0.00451077 886.529 

30011 3.03373 10:{*,P,2,^},{1,2,3,0} 31.6698 0.000607757 4991.67 

30011 3.78849 11:{*,P,2,^},{1,3,0,2} 30.2873 0.00555072 682.522 

30011 2.99422 12:{*,P,2,^},{1,3,2,0} 31.2772 0.00115591 2590.36 

30011 4.50418 15:{*,P,2,^},{2,1,0,3} 30.242 0.00378901 1188.75 

30011 3.35767 16:{*,P,2,^},{2,1,3,0} 31.6661 0.00190649 1761.18 

30011 3.93106 17:{*,P,2,^},{2,3,0,1} 30.2885 0.00646281 608.258 

30011 3.2632 18:{*,P,2,^},{2,3,1,0} 30.611 0.0024814 1315.06 

30011 4.61984 21:{*,P,2,^},{3,1,0,2} 29.8592 0.00406558 1136.33 
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30011 3.58239 22:{*,P,2,^},{3,1,2,0} 31.2661 0.0011851 3022.85 

30011 4.25748 23:{*,P,2,^},{3,2,0,1} 29.886 0.00587147 725.113 

30011 3.5185 24:{*,P,2,^},{3,2,1,0} 30.6002 0.0016776 2097.34 

 

Table 37. c=10009. Fit parameter and  𝑐3 of the plane equations for  𝑀𝑎𝑏𝑐 (type M2GOCRON4) 

for different assignments of Gödel symbols  

C 𝒄𝟑 Code table: symbols/values Max. value Standard error t-statistics 

10009 3.50252 1:{*,P,2,^},{0,1,2,3} 27.4048 0.00255229 1372.31 

10009 3.31693 2:{*,P,2,^},{0,1,3,2} 27.6525 0.00352484 941.016 

10009 3.40264 3:{*,P,2,^},{0,2,1,3} 26.9558 0.00190137 1789.57 

10009 3.01507 4:{*,P,2,^},{0,2,3,1} 27.6497 0.00111371 2707.22 

10009 3.18746 5:{*,P,2,^},{0,3,1,2} 26.9829 0.00348145 915.555 

10009 2.97092 6:{*,P,2,^},{0,3,2,1} 27.4021 0.00172728 1719.99 

10009 4.00661 9:{*,P,2,^},{1,2,0,3} 26.104 0.00790261 506.999 

10009 3.0335 10:{*,P,2,^},{1,2,3,0} 27.6466 0.00105616 2872.2 

10009 3.79832 11:{*,P,2,^},{1,3,0,2} 26.278 0.0097115 391.116 

10009 2.9951 12:{*,P,2,^},{1,3,2,0} 27.398 0.00200372 1494.77 

10009 4.50975 15:{*,P,2,^},{2,1,0,3} 26.0831 0.00668297 674.813 

10009 3.35675 16:{*,P,2,^},{2,1,3,0} 27.5776 0.00330739 1014.92 

10009 3.94228 17:{*,P,2,^},{2,3,0,1} 26.277 0.0113075 348.642 

10009 3.26532 18:{*,P,2,^},{2,3,1,0} 26.9845 0.00430428 758.62 

10009 4.62653 21:{*,P,2,^},{3,1,0,2} 25.7004 0.00719384 643.124 

10009 3.58183 22:{*,P,2,^},{3,1,2,0} 27.2467 0.00205594 1742.19 

10009 4.26777 23:{*,P,2,^},{3,2,0,1} 25.9801 0.0102978 414.436 

10009 3.51983 24:{*,P,2,^},{3,2,1,0} 26.8782 0.00291095 1209.17 

 

Table 38. c=10009. Fit parameter and  𝑐3 of the plane equations for  𝑀𝑎𝑏𝑐 (type EGOCRON4) 

for different assignments of Gödel symbols  

C 𝒄𝟑 Code table: symbols/values Max. value Standard error t-statistics 

10009 2.1217 1:{*,P,2,^},{0,1,2,3} 23.2525 0.00256872 825.975 

10009 1.93604 2:{*,P,2,^},{0,1,3,2} 23.5014 0.00353924 547.021 

10009 2.02181 3:{*,P,2,^},{0,2,1,3} 23.1332 0.00187808 1076.53 

10009 1.63421 4:{*,P,2,^},{0,2,3,1} 23.4314 0.00112142 1457.26 

10009 1.80654 5:{*,P,2,^},{0,3,1,2} 23.526 0.00345596 522.731 

10009 1.59005 6:{*,P,2,^},{0,3,2,1} 23.5452 0.00169719 936.872 

10009 2.61236 9:{*,P,2,^},{1,2,0,3} 23.1025 0.00785712 332.484 

10009 1.65067 10:{*,P,2,^},{1,2,3,0} 23.3575 0.00106003 1557.19 

10009 2.40797 11:{*,P,2,^},{1,3,0,2} 23.5053 0.00967604 248.859 

10009 1.61167 12:{*,P,2,^},{1,3,2,0} 23.5442 0.00198794 810.723 

10009 3.08406 15:{*,P,2,^},{2,1,0,3} 22.414 0.00649123 475.111 

10009 1.97171 16:{*,P,2,^},{2,1,3,0} 23.3565 0.00330899 595.863 

10009 2.5431 17:{*,P,2,^},{2,3,0,1} 23.5043 0.0112604 225.844 

10009 1.87643 18:{*,P,2,^},{2,3,1,0} 23.5239 0.00430664 435.707 

10009 3.18294 21:{*,P,2,^},{3,1,0,2} 22.4109 0.0068767 462.858 

10009 2.19211 22:{*,P,2,^},{3,1,2,0} 22.9524 0.00204121 1073.92 
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10009 2.8499 23:{*,P,2,^},{3,2,0,1} 23.0993 0.0101915 279.636 

10009 2.12547 24:{*,P,2,^},{3,2,1,0} 23.1287 0.00293149 725.048 

 

Table 39. c=10009. Fit parameter and  𝑐3 of the plane equations for  𝑀𝑎𝑏𝑐 (type EGOCRON4) 

for different assignments of Gödel symbols (order reversed)  

C 𝒄𝟑 Code table: symbols/values Max. value Standard error t-statistics 

10009 2.43885 1:{*,P,2,^},{0,1,2,3} 22.2941 0.00330491 737.948 

10009 2.48199 2:{*,P,2,^},{0,1,3,2} 22.2949 0.0025768 963.203 

10009 1.86469 3:{*,P,2,^},{0,2,1,3} 22.9589 0.00150375 1240.03 

10009 1.94351 4:{*,P,2,^},{0,2,3,1} 22.9598 0.00109807 1769.94 

10009 1.5486 5:{*,P,2,^},{0,3,1,2} 23.3565 0.00118561 1306.16 

10009 1.58908 6:{*,P,2,^},{0,3,2,1} 23.3575 0.00199429 796.813 

10009 1.81771 9:{*,P,2,^},{1,2,0,3} 23.0656 0.000933021 1948.2 

10009 1.97304 10:{*,P,2,^},{1,2,3,0} 23.0668 0.00316066 624.249 

10009 1.51979 11:{*,P,2,^},{1,3,0,2} 23.4296 0.00127364 1193.27 

10009 1.63535 12:{*,P,2,^},{1,3,2,0} 23.4318 0.00446254 366.462 

10009 2.27073 15:{*,P,2,^},{2,1,0,3} 22.657 0.00209251 1085.17 

10009 2.46931 16:{*,P,2,^},{2,1,3,0} 22.6589 0.00254729 969.387 

10009 1.54154 17:{*,P,2,^},{2,3,0,1} 23.499 0.00276984 556.546 

10009 1.62921 18:{*,P,2,^},{2,3,1,0} 23.5001 0.00550417 295.996 

10009 2.25579 21:{*,P,2,^},{3,1,0,2} 22.8032 0.00147073 1533.78 

10009 2.42527 22:{*,P,2,^},{3,1,2,0} 22.8045 0.00365269 663.97 

10009 1.83374 23:{*,P,2,^},{3,2,0,1} 23.2557 0.00223614 820.047 

10009 1.93552 24:{*,P,2,^},{3,2,1,0} 23.2561 0.00520616 371.774 

 

 

Table 40. c=10009. Fit parameter and  𝑐3 of the plane equations for  𝑀𝑎𝑏𝑐 (type M2GOCRON4) 

for different assignments of Gödel symbols (order reversed)  

C 𝒄𝟑 Code table: symbols/values Max. value Standard error t-statistics 

10009 4.85748 1:{*,P,2,^},{0,1,2,3} 25.5946 0.00684048 710.109 

10009 4.90055 2:{*,P,2,^},{0,1,3,2} 25.4929 0.00652405 751.152 

10009 4.28317 3:{*,P,2,^},{0,2,1,3} 26.0164 0.00620476 690.305 

10009 4.36192 4:{*,P,2,^},{0,2,3,1} 25.937 0.00610748 714.192 

10009 3.967 5:{*,P,2,^},{0,3,1,2} 26.3287 0.00614129 645.955 

10009 4.00745 6:{*,P,2,^},{0,3,2,1} 26.3326 0.00633565 632.524 

10009 3.54826 9:{*,P,2,^},{1,2,0,3} 26.8814 0.00192201 1846.12 

10009 3.6121 10:{*,P,2,^},{1,2,3,0} 26.8521 0.00222321 1624.72 

10009 3.36945 11:{*,P,2,^},{1,3,0,2} 27.0258 0.00278201 1211.16 

10009 3.41428 12:{*,P,2,^},{1,3,2,0} 27.0297 0.00325271 1049.67 

10009 3.37628 15:{*,P,2,^},{2,1,0,3} 27.2372 0.00192779 1751.37 

10009 3.42781 16:{*,P,2,^},{2,1,3,0} 27.2175 0.00241658 1418.46 

10009 3.0478 17:{*,P,2,^},{2,3,0,1} 27.4339 0.00142776 2134.67 

10009 3.06892 18:{*,P,2,^},{2,3,1,0} 27.4352 0.0023285 1317.99 

10009 3.09633 21:{*,P,2,^},{3,1,0,2} 27.5812 0.00291311 1062.9 

10009 3.13022 22:{*,P,2,^},{3,1,2,0} 27.5819 0.00355751 879.89 
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10009 2.93734 23:{*,P,2,^},{3,2,0,1} 27.6553 0.00149217 1968.51 

10009 2.95744 24:{*,P,2,^},{3,2,1,0} 27.6556 0.00252606 1170.77 

 

 

20.10.7 REED JAMESON PSEUDO PRIME NUMBERS 

So far, the following Reed Jameson pseudoprimes are known: 

      4.647.272.200.763.653 

     13.145.972.926.201.741 

     37.550.172.530.083.333 

     91.475.036.245.333.333 

    138.059.041.752.628.921 

  1.017.051.023.982.373.381 

  1.198.917.598.782.691.327 

  2.193.915.384.965.973.241 

  3.451.615.699.229.107.381 

  3.512.610.370.112.161.753 

  4.595.180.567.858.094.061 

  6.048.451.215.682.221.781 

  6.338.484.791.054.344.501 

  7.928.915.800.561.771.753 

  8.145.180.508.453.751.953 

  8.791.425.219.802.647.241 

  9.298.405.698.887.024.981 

  9.538.676.189.678.282.653 

 10.465.926.737.075.038.153 

 10.672.259.013.245.100.833 

 10.832.491.549.192.774.861 

 10.877.405.928.733.495.009 

 10.956.794.257.273.312.801 

 11.422.820.349.626.091.841 

 11.555.150.568.592.132.153 

 13.383.002.224.373.603.221 

 14.127.279.039.356.766.601 

 17.487.206.393.334.007.501 

 

Source: Peter Danzeglocke (calculated with an optimized C ++ program). 

The range 𝑛 < 1010 contains no Reed Jameson pseudo primes (as of December 2020). 
 

20.11 MATHEMATICA PROGRAMS 

In this section you will find a collection of Mathematica programs, such as speed-

optimized versions of the example programs described above. 

Chebyshev function psi(x): 

The function myPsi[x] can be made somewhat faster by exploiting symmetry properties and 

using the Evaluate[] and Compile[] functions: 

############################################################### 
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myPsi[x_]:=Evaluate[-2*Sum[((x)^ZetaZero[i])/ZetaZero[i],{i,1,15}]-

0.5*Log[1-1/x^2]+x-Log[2*Pi]]; 

myPsic=Compile[{{x,_Complex}},myPsi[x],CompilationOptions-

>{"ExpressionOptimization"->True}, 

CompilationOptions->{"InlineCompiledFunctions"->Auto}] 

Timing[Plot[Re[myPsic[x]],{x,1,100}]] 

20.11.1 COMPARISON OF THE NUMBER OF TWIN, COUSIN AND SEXY 
PRIMES BY THE FORMULA OF HARDY-LITTLEWOOD 

############################################################### 

Mathematica-Program: please contact the author. 

20.11.2 DIFFERENCERG SEQUENCES 

RG sequences with ‘Prime GOCRONs’ (type 6): 
Mathematica program: please contact the author. 

 

 

RG sequences with ‘EGOCRONs’ (type 4): 
(*The following examples need the OCRON-library (see below*) 

############################################################### 
(*example:*) 

Mathematica program: please contact the author. 

 
 

20.11.3 RIEMANN’S ZETA FUNCTION 

############################################################### 

(*animation of the ‘noise’ of the product representation in the 

complex domain:*) 

Mathematica program: please contact the author. 

(*(Snapshot:*) 
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############################################################### 

(*Iterative, approximat. method for the calculation of the product 

representation, using prime numbers *) 

(*along the critical line *) 

Mathematica program: please contact the author. 

 

 

############################################################### 

(*Iterative, approximat. method for the calculation of the product 

representation, using the zeros of the zeta function*) 

(*along the X-axis, zeros at prime numbers*) 

Mathematica program: please contact the author. 

 

############################################################### 

(*Parametric 3D-Plot of the Riemann zeta function along the crit. line 

*) 

Mathematica program: please contact the author. 

 

20.11.4 REED JAMESON AND PERRIN SEQUENCES 

(*##################################################################*) 

Mathematica program: please contact the author. 

 

 

 

Mathematica program: please contact the author. 

20.11.5 LATTICE POINTS ON N-SPHERES (N-DIMENSIONAL SPHERES) 

############################################################### 

(*Interactive animation: lattice points on 1-sphere*) 
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m=Manipulate[Graphics[ 

dim=2;sqN=Sqrt[n];sqNInt=Round[sqN]; 

numberOfGridPoints=SquaresR[dim,n]; 

If[numberOfGridPoints>0,sol=FindInstance[a^2+b^2==n,{a,b}, 

Integers,numberOfGridPoints]]; 

Flatten[Table[{},{x,-sqNInt-2,sqNInt+2}, 

{y,-sqNInt-2,sqNInt+2}]], 

Prolog->{If[ci,{{Black,Thickness[0.007],Circle[{0,0},sqN]}, 

If[numberOfGridPoints>0,{Red,PointSize[0.04], 

Point[{a,b}]/.sol}]},{}]}, 

Frame->If[ft,Automatic,False], 

PlotRange->{{-sqNInt-2,sqNInt+2},{-sqNInt-2,sqNInt+2}}, 

FrameTicks->If[ft,Automatic,None], 

ImageSize->{480,400},ImageMargins->10, 

GridLines->If[lattice,{Range[-sqNInt-2,sqNInt+2], 

Range[-sqNInt-2,sqNInt+2]}]], 

{{n,10,"square of radius"},2,100,1, 

Appearance->"Labeled"},Delimiter,{{lattice,True,"show 

lattice"},{True,False}}, 

{{ft,False,"show scale"},{True,False}},{{ci,True,"draw 

circle"},{True,False}},  

AutorunSequencing->Automatic] 

(*snaphot:*) 

 
 

Export["C:\\animations\\latticePointsOnN-

spheresInNDimensions\\latticePointsOn1-spheresIn2Dimensions_RQ2-

100.mov",m] 

############################################################### 
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(*Integer Grid-Points, touching the surface of a sphere for a 

given square of radius*) 

Mathematica program: please contact the author. 

 

 

############################################################### 

(* Lattice points on the surface of a 3 dimensional sphere*) 

(*angles of spherical coordinates interpreted as 2-dimensional 

Cartesisian coordinates *) 

Mathematica program: please contact the author. 

 

 

############################################################### 

(*Integer Grid-Points, touching the surface of a sphere for a 

given square of radius*) 

Mathematica program: please contact the author. 

 

(*Snapshot:*) 

 
(*used viewvector:*) 
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(*###########################################################*) 

(*Figure 86*) 

(*3D Plots of glomes, interpreting phi, theta and psi as 

Cartesian Coordinates *) 

Mathematica program: please contact the author. 

 

############################################################### 

(*Journey through the surface of a 4-dim Sphere *) 

(*Animation: 3D Plot of Glome, interpreting phi, theta and psi as 

Cartesian coordinates *) 

Mathematica program: please contact the author. 

 

(*Snapshot:*) 
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20.11.6 EVALUATION AND STATISTICS OF DIFFERENCES OF THE PRIME 
SEQUENCE  

(*Statistics with prime number differences of higher order*) 
Mathematica program: please contact the author. 
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20.11.7 THE ABC CONJECTURE 

(*abc-conjecture: calculates log Gödel-GOCRON4 codes of abc-points. 

Representation *) 

(*as 3D-Plot together with a 'fitted' plane from different views *) 

(* execution needs the OCRON Mathematica-library! *) 

 

Mathematica program: please contact the author. 

20.11.8 OTHER MATHEMATICA PROGRAMS 

(*Polynomial with 26 variables of degree 25, whose positive values are 

identical to the set pf primes *) 

(*This program searches for positive solutions *) 

c0=w z+h+j-q; 

c1=(g k+2g+k+1)*(h+j)+h-z; 

c2=2n+p+q+z-e; 

c3=16(k+1)^3 *(k+2)*(n+1)^2+1-f^2; 

c4=e^3*(e+2)*(a+1)^2+1-o^2; 

c5=(a^2-1)*y^2+1-x^2; 

c6=16r^2 y^4*(a^2-1)+1-u^2; 

c7=((a+u^2*(u^2-a))^2-1)*(n+4d y)^2+1-(x+c u)^2; 

c8=n+l+v-y; 

c9=(a^2-1)*l^2+1-m^2; 

c10=a i+k+1-l-i; 

c11=p+l*(a-n-1)+b*(2a n+2a-n^2-2n-2)-m; 

c12=q+y*(a-p-1)+s*(2a p+2a-p^2-2p-2)-x; 

c13=z+p l*(a-p)+t*(2a p-p^2-1)-p m; 

k=0; 

FindInstance[Element[k+2,Primes]&&c0==0&&c1==0&&c2==0&&c3==0&&c4==0&&c

5==0&&c6==0&&c7==0&&c8==0&&c9==0&&c10==0&&c11==0&&c12==0&&c13==0&&a>=0

&&b>=0&&c>=0&&d>=0&&e>=0&&f>=0&&g>=0&&h>=0&&i>=0&&j>=0&&k>=0&&l>=0&&m>

=0&&n>=0&&o>=0&&p>=0&&q>=0&&r>=0&&s>=0&&t>=0&&u>=0&&v>=0&&w>=0&&x>=0&&

y>=0&&z>=0,{a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z},Integ

ers] 

 

 

(*Calculation of the sigma1 function*) 

myDivisorSigma[k_,n_]:= 

Sum[m^(k-1)Sum[Cos[(2 pi j n)/m],{j,1,m}],{m,1,n}] 

(*Example: n= 31*) 

myDivisorSigma[1,31]  

 

This expression is not seen as identical to 32 



 Appendix 

337 
 

−2(−19 + 2sin (
𝜋

14
) − 2sin (

3𝜋

14
) − 2sin (

𝜋

18
) + sin (

𝜋

22
) − sin (

3𝜋

22
) + sin (

5𝜋

22
) − sin (

𝜋

26
) + sin (

3𝜋

26
)

− sin (
5𝜋

26
) + sin (

𝜋

30
) − sin (

7𝜋

30
) − sin (

𝜋

34
) + sin (

3𝜋

34
) − sin (

5𝜋

34
) + sin (

7𝜋

34
)

+ sin (
𝜋

38
) − sin (

3𝜋

38
) + sin (

5𝜋

38
) − sin (

7𝜋

38
) + sin (

9𝜋

38
) − sin (

𝜋

42
) − sin (

5𝜋

42
)

+ sin (
𝜋

46
) − sin (

3𝜋

46
) + sin (

5𝜋

46
) − sin (

7𝜋

46
) + sin (

9𝜋

46
) − sin (

11𝜋

46
) − sin (

𝜋

50
)

+ sin (
3𝜋

50
) + sin (

7𝜋

50
) − sin (

9𝜋

50
) + sin (

11𝜋

50
) + sin (

𝜋

54
) + sin (

5𝜋

54
) − sin (

7𝜋

54
)

− sin (
11𝜋

54
) + sin (

13𝜋

54
) − sin (

𝜋

58
) + sin (

3𝜋

58
) − sin (

5𝜋

58
) + sin (

7𝜋

58
) − sin (

9𝜋

58
)

+ sin (
11𝜋

58
) − sin (

13𝜋

58
) + 2cos (

𝜋

7
) + 2cos (

𝜋

9
) − 2cos (

2𝜋

9
) + cos (

𝜋

11
) − cos (

2𝜋

11
)

+ cos (
𝜋

13
) − cos (

2𝜋

13
) + cos (

3𝜋

13
) + cos (

𝜋

15
) − cos (

2𝜋

15
) + cos (

𝜋

17
) − cos (

2𝜋

17
)

+ cos (
3𝜋

17
) − cos (

4𝜋

17
) + cos (

𝜋

19
) − cos (

2𝜋

19
) + cos (

3𝜋

19
) − cos (

4𝜋

19
) + cos (

𝜋

21
)

− cos (
2𝜋

21
) − cos (

4𝜋

21
) + cos (

5𝜋

21
) + cos (

𝜋

23
) − cos (

2𝜋

23
) + cos (

3𝜋

23
) − cos (

4𝜋

23
)

+ cos (
5𝜋

23
) + cos (

𝜋

25
) − cos (

2𝜋

25
) + cos (

3𝜋

25
) − cos (

4𝜋

25
) − cos (

6𝜋

25
) + cos (

𝜋

27
)

− cos (
2𝜋

27
) − cos (

4𝜋

27
) + cos (

5𝜋

27
) + cos (

𝜋

29
) − cos (

2𝜋

29
) + cos (

3𝜋

29
) − cos (

4𝜋

29
)

+ cos (
5𝜋

29
) − cos (

6𝜋

29
) + cos (

7𝜋

29
)) 

 

Therefore: 

FullSimplify[myDivisorSigma[1,31]] 

32 

or, even better: 

N[myDivisorSigma[1,31]] 

32.  
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20.11.9 OCRONS AND THE ABC CONJECTURE: PROGRAM LIBRARY 

20.11.9.1 OCRON FUNCTIONS 

(* ##################################################################################*) 

(* Library: GOCRON-Routines actual version Sept.2016*) 

(* ##################################################################################*) 

Mathematica Program: please contact the author. 

(* OCRON-Functionlist: 

nToGoedelSymbolList[n_],goedelSymbolListToN[symbolList_] 

nToGoedelSymbolListForPrimeOCRONS[n_],goedelSymbolListToNForPrimeOCRONS[symbolList_] 

nToGoedelSymbolListForVirtualOCRONs[n_],goedelSymbolListToNForVirtualOCRONS[symbolList_] 

##################### OCRON4, GOCRON4 ################# 

nToOCRON4[n_], oCRON4ToN[symbolList_], oCRON4ToNMaxVal[symbolList_,maxVal_] 

nToGOCRON4[n_], GOCRON4ToN[n_], GOCRON4ToNMaxVal[symbolList_,maxVal_] 

checkOCRON4[n_] 

##################### M2OCRON4, M2GOCRON4 without leading 2 ################# 

nToM2OCRON4[n_], m2OCRON4ToN[symbolList_] 

nToM2GOCRON4[n_], msGOCRON4ToN[n_] 

##################### EOCRON4, EGOCRON4 ################# 

nToEOCRON4[n_],eOCRON4ToN[symbolList_], eOCRON4ToNMaxVal[symbolList_,maxVal_] 

nToEGOCRON4[n_],eGOCRON4ToN[n_], eGOCRON4ToNMaxVal[symbolList_,maxVal_] 

##################### PrimeOCRON, PrimeGOCRON (type 6)################# 

nToPrimeOCRON[n_], primeOCRONToN[n_] 

nToPrimeGOCRON[n_],primeGOCRONToN[n_] 

##################### Miscellaneous ######################### 

createAscendingEOcron4List[n_] 

createAscendingEVirtualOcron4List[n_] 

createAscendingVirtualOcron4List[n_] 

createAllValuesListFromAscendingVirtualOcron4s[n_] 

createIntValuesListFromAscendingVirtualOcron4s[n_] 

createAscendingIntList[n_] 

createAscendinGOCRONListFromNaturalNumbers[n_] 

createAscendingGOCRONListFromNaturalNumbers[n_] 

createAscendingEOCRONListFromNaturalNumbers[n_] 

createAscendingEGOCRONListFromNaturalNumbers[n_] 

createAscendingM2OCRONListFromNaturalNumbers[n_] 

createAscendingM2GOCRONListFromNaturalNumbers[n_] 

resetGloc4Codes[] 

setGLoc4CodeSymbols[symbols_] 

setGLoc4CodeValues[values_] 

######################### Virtual OCRONs ####################### 

checkVirtualOCRON4[n_], virtualOCRON4ToOCRON4[symbolList_] 

virtualOCRON4ToN[symbolList_] 

###################################################################################### 

Evaluating OCRONS by converting the Polish RPN-representation used in OCRONS to 'normal' 

Mathematica expressions before numerical evaluation ####################### 

####################################################################################### 

oCRON4ToExpression[symbolList_] 

loGOCRON4ToExpression[symbolList_] 

loGOCRON4ToExpressionSimplify[symbolList_] 

oCRON4ToExpressionPowerExpand[symbolList_] 

loGOCRON4ToExpressionPowerExpand[symbolList_] 

logLoGOCRON4ToExpressionPowerExpand[symbolList_] 

convertOcronToTraditionalForm[symbolList_] 

convertLogOcronToTraditionalForm[symbolList_] 

convertLogLogOcronNToTraditionalForm[symbolList_] 

*) 

 

 

20.11.9.2 THE ABC CONJECTURE 

 

(*##########################################################################*) 

(*##########################################################################*) 

 

(*radicals, quality, isPossibleABC, radABC() computes radABC from c, but does 

not always get the smallest one!!*) 
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(*minRadABC takes always the smallest*) 

 

20.11.9.3 THE DEGENERATION OF OCRONS 

(*##########################################################################*) 

(*Degeneration-values of OCRONs type 4 *) 

(*Needs GOCRON4-Library *) 

(*##########################################################################*) 

gloc4Codes={{"*","P","2","^"},{0,1,2,3}}; (*actual code-Table,*) 

(*Note: maxEGocrons should be at least 13 symbols long (e.g. 22*2*2*2*2*2* = 

2^7=128) *) 

(* Because of 

goedelSymbolListToN[{"^","^","^","^","^","^","^","^","^","^","^","^","^"}]=671

08863 *) 

(* maxEOcrons should be at least 67.108.863 to get all degeneration values up 

to maxValue = 128 (=2^7 *)  

(* maxEOcrons should be at least 1073741823 to get all degeneration values up 

to maxValue = 256 (=2^8 *)  

maxValue=128; maxEOcrons=67200000; 

ocron4DegenList=Table[{},{i,1,maxValue}]; 

For[i=1,i<maxEOcrons,i++, 

eOcron=nToGoedelSymbolList[i]; 

iValue=oCRON4ToNMaxVal[eOcron,maxValue]; 

If[iValue>0&& iValue<= maxValue,AppendTo[ocron4DegenList[[iValue]],eOcron]; 

]; 

If[Mod[i,100000]==0,Print[N[i/67200000]]]; 

] 

For[i=1,i<maxValue,i++, 

Print[i,": ",Length[ocron4DegenList[[i]]],"->",ocron4DegenList[[i]]]; 

] 

 

20.11.10 SOUND ROUTINES 

(*#############Prime Sound-Library#################################*) 

(*Generate a sorted list of the combined (sieve number, prime number)-

pairs by: *) 

Mathematica program: please contact the author. 

20.11.11 RSA ENCRYPTION AND DECRYPTION 

(*Example 1: encode/Decode a number (1115) *)  

(*Very simple example of RSA encryption*)  

(*Without Encoding/Decoding Functions from Mathematica…*) 

(*############## implement coding mechanism ####################*) 

(*choose two different prime numbers:*) 

Mathematica program: please contact the author. 

 

(*Example 2: same as Example 1: encode a number (1115) *) 

(*using Mathematica built-in functions*) 

(*publicKey[], privateKey[], Encrypt[], Decrypt[]*)  

(*used padding-mode: ‚none‘ *) 

(*IMPORTANT: in this Mathematica-version (10.3) Encoding with 

PublicKey-Objects and padding: "None" only works for up to 16-bit 

Modules *)  

Mathematica program: please contact the author. 

(*############## Encode and decode messages:######################*) 

(*this is our message to be encoded:*) 
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Mathematica program: please contact the author. 

 

 

(*Example 3: rSA-Encoding/Decoding a small String ("OK") using PKCS1 

padding*) 

(*let Mathematica choose p, q and the modulus using Mathematica built-

in functions*) 

Mathematica program: please contact the author. 

(*Example 4: hacking a 

private Key from a public key using PKCS1 padding with key length 

192*) 

(*We use Mathematica built-in functions PrivateKey[], Decrypt[] and 

FactorInteger[]*)  

(*###############################################################*) 
Mathematica program: please contact the author. 

(*###### decoding can be done different ways::#########*) 

 

(* Decrypted data by using Decrypt[] will not contain padded data…*) 

bCryptArray=ByteArray[IntegerDigits[mCrypt,256]]; 

decryptedByteArray=Normal[Decrypt[privKey,bCryptArray]] 

decryptedString=FromCharacterCode[decryptedByteArray]; 

Print["Decryption-result (original String: ",decryptedString]; 

(**** program – output:****) 

prime p from RSA:module: 68357071940820194611682396513 

prime q from RSA:module: 78553627484042565312533006567 

private Exponent: 

4844991859660492495555967871982611572207133532958607342401 

Private Modulus: 

5369695965139088101081485235420567443013865529391511497792 

Hacked private key:  

cipher: rSA 

private exponent length: 192 bits 

public modulus length: 192 bits 

padding: pKCS1 
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public exponent: 65537 

 

 
 

Original Text as Bytearray including Bytes padded by PKCS1 algorithm:  

{2,11,165,77,224,174,48,231,225,235,0,69,108,118,105,115,32,108,105,11

8,101,115,33} 

\.02\.0b¥Mà®0çáë\.00Elvis lives! 

Decryption-result (original Byte array:  

{69,108,118,105,115,32,108,105,118,101,115,33} 

Decryption-result (original String):  

Elvis lives! 

 

 

(*Example 5: hacking a private Key from a public key using PKCS1 

padding with key length 2048*) 

(*We use Mathematica built-in functions PrivateKey[], Decrypt[] and 

FactorInteger[]*)88  

(*###############################################################*) 

Mathematica program: please contact the author. 

(* Decrypted data by using Decrypt[] will not contain padded data…*) 

bCryptArray=ByteArray[IntegerDigits[mCrypt,256]]; 

decryptedByteArray=Normal[Decrypt[privKey,bCryptArray]] 

decryptedString=FromCharacterCode[decryptedByteArray]; 

Print["Decryption-result (original String: ",decryptedString]; 

 

(**** program – output:****) 

prime p from RSA-module: 

5042275217484184784387456407481025964634418009557323862771843210015347

0233709220326765100448150841802101002465172565326870447505988642493935

6768330261183984688981022399271959231632244880124488202703458535772508

3261691330915873078509567583024603043325764678776810906881522663421805

761981426998378611173580023640569 

prime q from RSA-module: 

6230506107037277994848859713460167565407435407248343949280547643268996

2794782739027185058685887929516793028417110464017369917383411955467390

4850630650913159085619714144991810427714356257581581356417704599361604

8753993877513046170835382583128576250458442756910532302852222491700224

633245295180992749493823 

private Exponent: 

1030819360403968961043390501763010666063077815038257405347287921525051

2535022756352365421194768891684069779277718177933402369048702835912585

4131450497268501685537802072878657793084753037172733458691935491519525

1853460378496829887538632390637136150965931733628074554699429623111223

3269880545420815346132763817866426056363791352182879224677368503022618

4983798138489051261011671669601896311386511911972803990381100552366494

4073403141189139015889364169952790178286921216796288440782997538376575

 
88 The program runs with Mathematica Version 15.5 (2026) or higher 
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7085206627441700960078133155365855116355242551141828940174105853199096

690164133765434208900272472536995205015922393069952712705 

Private Modulus: 

3141592653589793238462643383279502884197169399375105820974944592307816

4062862089986280348253421170679821480865132823066470938446095505822317

2535940812848111745028410270193852110555964462294895493038196442881097

5665933446128475648233786783165271201909145648566923460348610454326648

2133936072602491412737302005743673942332300681176030308206877770767919

8534374004936614234231860407863629025266826226514213872656537709283991

0702130843755236406451881492103609092001021009355392277882966409625448

3914303698969808213385445154539250686410599473315757219688912541904259

662541240447603317926765114985912144304711024675664570896 

Hacked private key:  

cipher: rSA 

private exponent length: 2047 bits 

public modulus length: 2048 bits 

padding: pKCS1 

public exponent: 65537 

 
Original Text as Bytearray including Bytes padded by PKCS1 algorithm:  

{2,169,246,29,163,145,193,96,236,157,15,189,194,238,0,73,102,32,68,111

,110,97,108,100,32,84,114,117,109,112,32,115,104,111,117,108,100,32,11

9,105,110,32,116,104,101,32,112,114,101,115,105,100,101,110,116,105,97

,108,32,101,108,101,99,116,105,111,110,115,44,32,116,104,105,115,32,11

9,111,117,108,100,32,98,101,32,97,32,100,105,115,97,115,116,101,114,32

,102,111,114,32,116,104,101,32,85,110,105,116,101,100,32,83,116,97,116

,101,115,32,111,102,32,65,109,101,114,105,99,97,46,10,39,116,119,97,11

5,32,98,114,105,108,108,105,103,44,32,97,110,100,32,116,104,101,32,115

,108,105,116,104,121,32,116,111,118,101,115,10,100,105,100,32,103,121,

114,101,32,97,110,100,32,103,105,109,98,108,101,32,105,110,32,116,104,

101,32,119,97,98,101,58,10,65,108,108,32,109,105,109,115,121,32,119,10

1,114,101,32,116,104,101,32,98,111,114,111,103,111,118,101,115,44,10,9

7,110,100,32,116,104,101,32,109,111,109,101,32,114,97,116,104,115,32,1

11,117,116,103,114,97,98,101} 

\.02©ö\.1d£‘Á`ì�\.0f½Âî\.00If Donald Trump should win the presidential 
elections, this would be a disaster for the United States of America. 

'twas brillig, and the slithy toves 

did gyre and gimble in the wabe: 

All mimsy were the borogoves, 

and the mome raths outgrabe 

Decryption-result (original String: if Donald Trump should win the 

presidential elections, this would be a disaster for the United States 

of America. 

'twas brillig, and the slithy toves 

did gyre and gimble in the wabe: 

All mimsy were the borogoves, 

and the mome raths outgrabe 

20.11.12 ALIQUOT SEQUENCES 
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(* computes aliquot sequences for a few interesting initial 

values*) 

Mathematica program: please contact the author. 

Output: 

{1,Terminating,{1,0}} 

{2,Terminating,{2,1,0}} 

{3,Terminating,{3,1,0}} 

{4,Terminating,{4,3,1,0}} 

{5,Terminating,{5,1,0}} 

{6,Perfect,{{6}}} 

{7,Terminating,{7,1,0}} 

{8,Terminating,{8,7,1,0}} 

{9,Terminating,{9,4,3,1,0}} 

{10,Terminating,{10,8,7,1,0}} 

{11,Terminating,{11,1,0}} 

{12,Terminating,{12,16,15,9,4,3,1,0}} 

{28,Perfect,{{28}}} 

{496,Perfect,{{496}}} 

{220,Amicable,{{220,284}}} 

{1184,Amicable,{{1184,1210}}} 

{12496,Sociable,{{12496,14288,15472,14536,14264}}} 

{1264460,Sociable,{{1264460,1547860,1727636,1305184}}} 

{790,Aspiring,{790,650,652,{496}}} 

{909,Aspiring,{909,417,143,25,{6}}} 

{562,Cyclic,{562,{284,220}}} 

{1064,Cyclic,{1064,1336,{1184,1210}}} 

{1488,Non-

terminating,{1488,2480,3472,4464,8432,9424,10416,21328,22320,55056,957

28,96720,236592,459792,881392,882384,1474608}} 

 

 

(*Aliquot 276 (306,396,696)OE:*)  

Mathematica program: please contact the author. 

 

(*#############################################################*) 

(*Plot Differences of Log of aliquot sequences, using ListPlot*) 

n=921232;noIterate=1000; diffOrder=1; 

Mathematica program: please contact the author. 

20.11.13 THE ARECIBO MESSAGE 

(*Arecibo-Message*) 

n=23; 

t=Table[BitShiftRight[BitAnd[27886402056107263551714831669687744330301

5886191896083753494207226153602508928851994608485761550978983329982259

3335259720410959738432212343758921014182008038517667278025253709464080

0567916516636264434941344165234644984933485655114374616110243082450500

4833981684141550381731028954290673308020242293291528914499592811145845

8595397126461136347103419178098716188118662826517986311913829406689871

7096729057657705911386899499333419586667745206851413286366090402386362

1169622066629371322105035882727404788841080,2^i],i],{i,1679,0,-

1}];ArrayPlot[Partition[t,n],Mesh->All, 

ColorRules->{1->RGBColor[.0,.1,.9],0->RGBColor[.9,.5,.2]}, 

ImageSize->Medium,PlotLabel->{"Arecibo-Message"}, 

PlotLegends->Automatic] 
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20.11.14 CORRELATIONS OF THE LAST DIGITS IN THE PRIME NUMBER 
SEQUENCE 

(*statistical properties and correlations, concerning the last digits 

in the prime sequence*) 

(* one predecessor:*) 

Mathematica program: please contact the author. 

 

20.11.15 PRIME N-TUPLETS AND MAXIMAL PRIME NUMBER DENSITY 

 (* Construction of a maximal prime number density *)  

(* the generated Sequence of possible prime positions is identical with OEIS A020498 *) 

(* 1,3,7,9,13,19,21,27,31,33,37,43,49,51,57,63,69,73,,, *) 

(*The patterns resulting from the differences of the p-positions (generated by sieving) 

repeat after the following cycles: *) 

(*sieving up to 2: {2 } length of period: 1,    primorial(1)=2 *)           

(*RotateLeft[Differences[Select[Range[2+1],GCD[#,2]\[Equal]1&]],0]; *) 

(*sieving up to 3: {2,4} length of period: 2,  primorial(2)=6*)             

(*RotateLeft[Differences[Select[Range[2*3+1],GCD[#,2*3]\[Equal]1&]],1]; *) 

(*sieving up to 5: {2,4,2,4,6,2,6,4} length of period: 8,    primorial(3)=30  *)               

(*RotateLeft[Differences[Select[Range[2*3*5+1],GCD[#,2*3*5]\[Equal]1&]],2]; *)   

(*sieving up to 7: {2,4,2,4,6,2,6,4,2,4,6,6,2,6,4,2,6,4,6,8,...2,10,2,10 } length of 

period: 48,     primorial(4)=210 *)     

(*RotateLeft[Differences[Select[Range[2*3*5*7+1],GCD[#,2*3*5*7]\[Equal]1&]],1];*) 

(*sieving up to 11: 

{2,4,2,4,6,2,6,4,2,4,6,6,2,6,6,6,4,6,8,4,2,4,2,4,8,6,4,8,4,6,2,6,6,4,2,4,6,8,4,2,4,2,10,

...,2,10,2,10 } length of period: 480,     primorial(5)=2310*)        

(*RotateLeft[Differences[Select[Range[2*3*5*7*11+1],GCD[#,2*3*5*7*11]\[Equal]1&]],262]*) 

(*sieving up to 13: 

{2,4,2,4,6,2,6,4,2,4,6,6,2,6,6,6,4,6,8,4,6,2,4,8,6,4,8,4,6,2,...2,10,2,10 } length of 

period: 5760,     primorial(6)=30030   *)          

(*RotateLeft[Differences[Select[Range[2*3*5*7*11*13+1],GCD[#,2*3*5*7*11*13]\[Equal]1&]],

2899]*) 

(*sieving up to 17: {... } length of period: 92160 ,     primorial(7)=510510    *)        

(*RotateLeft[Differences[Select[Range[primorial[7]+1],GCD[#,primorial[7]]\[Equal]1&]],89

465]*) 

(*sieving up to 19: {... } length of period: 1658880,     primorial(8)=9699690 *)            

(*RotateLeft[Differences[Select[Range[2*3*5*7*11*13*17*19+1],GCD[#,2*3*5*7*11*13*17*19]\

[Equal]1&]],???]*) 

(* The period length can be easily calculated by the formula: a(0)=1;for 

n>0,a(n)=(prime(n)-1)*a(n-1) *) 

(* Mathematica: RecurrenceTable[{a[0]\[Equal]1,a[n]\[Equal](Prime[n]-1)a[n-1]},a,{n,10}] 

*) 

(* Arguments of Range[] and GCD[]: primorial[n]: 

2,6,30,210,2310,30030,510510,9699690,... Mathematica: 

primorial[n_]:=Product[Prime[i],{i,n}];*) 

(* The Sequence {0,1,2,1,262,2899,89465...} of the arguments for the RotateFeft function  

is unknown *) 

(* The values for the corresponding RotateRight operatons read: 

{0,1,6,47,218,2861,2695,... *) 

(* functions: *) 
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Lattice-Points_In_4_Dimensions 

Matrix 

MersennePrimes 

Moebius_Mertens 

OCRONS 

Plots_Of_Zetafunction_Using_Product-Representation 

Prime_NTuples_MaxPrimeDensity 

Prime-Polynom_With_26_Variables 

Primes_And_Star_Constellations 

Ramanujan-Sums 
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Ramanujan-Tau 

RG_Numbers 

Riemann_Exact_Explicit_Formula 

RSA 

Sigma_Function_Tests 

Special_Types_Of_Primes_And_Other_Numbers 

Tests_With_Recursive_Sequences_(Perrin_Reed_Jameson) 

Twin_Triple_Sexy_Primes 

Using_Zeta_Zeros_To_Compute_Numbertheoretic_Functions 

Wieferich_And_Similar_Primes 

Zeta-Function 

SOUNDS 

Directory: Sounds 

primeNumberSong46Sec.mid 

primeNumberSong46Sek.mp3 

Eratosthenes.mpd (Melodyne file) 

 

 

GRAPHICS 

The directory Images contains numerous graphics in vector and raster formats. 

Note: these graphics may not be distributed, reproduced or displayed on the Internet 

without permission of the author.  
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